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ABSTRACT
Many mathematicians, physicists, and philosophers have suggested that the fact that
mathematics—an a priori discipline informed substantially by aesthetic considerations
—can be applied to natural science is mysterious. This paper sharpens and responds to
a challenge to this effect. I argue that the aesthetic considerations used to evaluate and
motivate mathematics are much more closely connected with the physical world than
one might presume, and (with reference to case studies within Galois theory and
probabilistic number theory) I show that they are correlated with generally
recognised theoretical virtues, such as explanatory depth, unifying power,
fruitfulness, and importance.

ARTICLE HISTORY Received 28 May 2019; Revised 24 January 2020

KEYWORDS philosophy of mathematics; applicability of mathematics; Wigner; unreasonable effectiveness;
aesthetics; theoretical virtue

1. Introduction

It is striking that mathematics can be so successfully applied to the natural sciences.
Many philosophers—following Quine and Putnam—have taken this fact to be signifi-
cant in the dispute between platonists and nominalists about the existence of math-
ematical objects.1 But the applicability of mathematics raises a different question,
arising more from a sense that its success is puzzling in its own right. The fact that
mathematics—a discipline carried out more or less entirely in the armchair, using a see-
mingly a priori methodology—can be applied to the physical world can be made to
seem striking, mysterious—even inexplicable. Perhaps the canonical source of this puz-
zlement is Eugene Wigner [1960: 14], who argued in a famous essay that ‘the miracle of
appropriateness of the language of mathematics for the formulation of the laws of
physics is a wonderful gift which we neither understand nor deserve.’

Adding to the air of mystery is a widely shared sense that aesthetic judgments play a
fundamental role in mathematics. Wigner [ibid.: 3] characterises most ‘advanced math-
ematical concepts’ as being ‘so devised that they are apt subjects on which the mathe-
matician can demonstrate his ingenuity and sense of formal beauty’—and is explicit that
the connection with aesthetics is responsible for much of the force of the puzzle. How
can mathematical concepts, devised by following aesthetic impulses, be put to such
spectacular use in empirical applications? Similar puzzlement is expressed by Steven
Weinberg [1993: 125]:

1 See, e.g., Quine [1960], Putnam [1975], Field [1980], and Colyvan [2001a] for a small sample of this literature.
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It is very strange that mathematicians are led by their sense of mathematical beauty to develop
formal structures that physicists only later find useful, even where the mathematician had no
such goal in mind.… Physicists generally find the ability of mathematicians to anticipate the
mathematics needed in the theories of physics quite uncanny. It is as if Neil Armstrong in
1969 when he first set foot on the surface of the moon had found in the lunar dust the footsteps
of Jules Verne.2

My aim in this paper is to provide a resolution of this puzzle. The first task (section 2) is
to get a more precise formulation into view. I argue that the points raised by Wigner
et al. generate an explanatory challenge—roughly, that of explaining the applicability
of mathematics, given its apriority and its connection with aesthetic considerations.
The rest of the paper responds to this challenge. Section 3 questions (or at least substan-
tially qualifies) the conception of mathematics responsible for the puzzle by arguing that
there are mathematical virtues over and above aesthetic virtues: despite its apparently a
priorimethodology, mathematics is linked by the pursuit of these virtues to the empiri-
cal world. Even so, the prevalence of aesthetic criteria in mathematics poses a residual
question. This is resolved in section 4, which examines two case studies of aesthetically
appealing mathematics—one within Galois theory and one within probabilistic number
theory. In light of these examples, I argue that aesthetic virtues in mathematics are
highly correlated with more general theoretical virtues—simplicity, generality, explana-
tory power, etc—of the sort that play an important role within scientific practice.

2. The Applicability of Mathematics as Explanatory Challenge

In presenting his case, Wigner gives a number of examples of mathematics originally
developed for internal reasons, but which later emerged as crucial in applications.
Moreover, he conceives of these reasons as primarily aesthetic in nature. For instance,
he writes [1960: 3]:

if a mathematician is asked to justify his interest in complex numbers, he will point, with some
indignation, to the many beautiful theorems in the theory of equations, of power series, and of
analytic functions in general, which owe their origin to the introduction of complex numbers.

But, despite their internal mathematical motivation, complex numbers came to play a
fundamental role within many parts of physics, including the theory of electromagnet-
ism, fluid dynamics, and quantum mechanics.

Although Wigner’s discussion is subtle and contains many suggestive examples, it is
not obvious how to extract a sharply formulated philosophical problem from it. I
propose to understand the puzzle as an explanatory challenge: facts which, taken
together, seem to be ‘striking’ or ‘cry out’ for explanation. Arguments with the structure
of explanatory challenges have received much attention in recent philosophy of math-
ematics. For instance, Benacerraf’s epistemic argument against realism has been refined
as the challenge of explaining the striking fact that our mathematical beliefs are
reliable.3 Unlike these debates, the explanatory challenge here is not directed against
any particular philosophical target; I take it to be less a suppressed argument and
more a genuine puzzle, confronting anyone with certain (widely held) views about

2 Similar sentiments can be found in Feynman [1967: 171]: ‘I find it quite amazing that it is possible to predict what
will happen by mathematics, which is simply following rules which really have nothing to do with the original
thing.’
3 See Benacerraf [1973], Field [1989], and Schechter [2018]. See also Warren and Waxman [forthcoming] for a
recent explanatory challenge concerning determinacy.
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mathematics and its significance to science.4 I emphasise that I endorse these views only
with substantial qualifications, which will emerge as we proceed (chiefly in sections 3
and 4). But, for now, I will motivate them straightforwardly, in order to generate a
prima facie challenge in the strongest terms.

The first component of the explanatory challenge is a widespread view of
mathematics:

(I) Pure mathematics is an a priori discipline that appeals essentially to aesthetic considerations.

The relevant notion of apriority here is more methodological than epistemic. To be sure,
many prominent philosophical accounts of mathematics view it as a priori, in the epis-
temic sense of being justified independently of experience. But, as intended, the claim is
consistent even with empiricist views according to which the ultimate justification for
mathematics derives from its links with empirical inquiry. The point is simply that the
practice of pure mathematics, as the subject is actually carried out, is, methodologically
speaking, largely detached from experience. Put crudely, if we observe mathematicians
during their working hours, we do not see them conducting empirical investigations, or
performing experiments, or measuring physical quantities; rather, their time is spent in
‘armchair’ activities—proving theorems, investigating mathematical constructions, for-
mulating definitions, etc., primarily using the tools of deductive logic. So, regardless of
one’s view of the justification of pure mathematics, it seems hard to deny that its day-to-
day methodology takes place without substantial empirical input.

(I) also claims an essential role for aesthetic considerations within mathematics.
Many observers have noted that apparently aesthetic terminology is prevalent:
proofs, techniques, equations, theorems, conjectures, and whole bodies of theory are
variously described as ‘beautiful’, ‘elegant’, ‘neat’, ‘harmonious’, ‘clean’, and so on,
and examples can be multiplied.5 One option is to dismiss such talk as frivolous or elim-
inable. But those impressed by the puzzle have tended instead to conceive of aesthetic
considerations as essential to fully understanding mathematics or mathematical prac-
tice. There are at least three ways in which this might happen.

One is that aesthetic considerations play a constitutive role in delineating the bound-
aries of the mathematical. Steiner [1998: 65] expresses such a view when he claims that
‘the aesthetic factor in mathematics is constitutive… concepts are selected as math-
ematical because they foster beautiful theorems and beautiful theories.’ He goes on
[ibid.: 66]—mentioning an example of Frege’s—to argue that the explanation of the
fact that the study of chess is not properly considered to be mathematics, whereas
the study of Hilbert spaces is, will ‘rely on aesthetics’.6

A second possible role for aesthetic considerations is normative. Something like this
is expressed by Hardy [1940: 85] when he claims that

4 One option, inspired by Steiner [1998] and pursued in an earlier version of this paper, would be to direct the
challenge at a species of naturalism, by construing it as an argument that mathematics is tacitly anthropocentric.
However, helpful comments from a referee persuaded me that the relevant notion of anthropocentrism was
neither entirely clear nor necessary for the dialectic.
5 See, e.g., the essays in Sinclair et al. [2006].
6 An immediate issue is that there is a difference between the boundary between mathematics/non-mathematics
and the boundary between good/bad mathematics. It is surely a datum that demonstrably trivial or ugly or inele-
gant or uninteresting theories still count as mathematics, and so, if this view is to be made plausible, something
must be said to finesse such counterexamples.
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the mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas, like the
colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no
permanent place in the world for ugly mathematics.

I take Hardy not to be claiming here that ugly mathematics is not mathematics
altogether, but rather that there is something normatively or evaluatively deficient
about it. More generally, on such a view, the full account of what makes a piece of math-
ematics good or valuable, or what constitutes success in mathematical inquiry, turns
upon aesthetic factors.

Finally, aesthetic considerations might be necessary to explain the development of
mathematics. Wigner held a version of this view, claiming that the subject was devel-
oped, at least in significant part, on the basis of mathematicians’ aesthetic judgments.
Another proponent is von Neumann [1956: 2062], who claims that

[the mathematician’s] criteria of selection and also those of success are mainly aesthetical…
One expects a mathematical theory not only to describe and classify in a simple and elegant
way numerous and a priori disparate cases. One also expects ‘elegance’ in its ‘architectural,’
structural makeup.

For our purposes, we can remain neutral about the precise relationship between math-
ematics and aesthetics. What is important for getting the puzzle off the ground is the
prima facie plausible claim that aesthetic factors play some such significant role in
mathematics.

The other component of the explanatory challenge concerns the applicability of
mathematics to empirical science:

(II) Scientific practice draws substantially on mathematical concepts and structures.

Stated at this level of generality, the claim is a truism. In sharpening it, proponents of
the puzzle of applicability have focused on two main ways in which science is informed
by mathematics. Perhaps the most obvious is that scientific theories are formulated by
using mathematical vocabulary. This raises deep questions, but, at a sufficiently high
level of abstraction, mathematical vocabulary seems to play a kind of representational
role, exploiting structural similarities between various mathematical objects or struc-
tures and various aspects of the physical world.7

A different role of mathematics is in the discovery of scientific theories.8 A nice illus-
tration is Dirac’s equation and the prediction of positrons. A major challenge in the
early days of quantum mechanics was that of finding a relativistic account of electrons,
since prevailing approaches treated space and time in an unrelativistically asymmetric
manner. Dirac had the idea of ‘factorizing’ the Klein–Gordon equation, obtaining:

∇2 − 1
c2

∂2

∂t2
= A∂x + B∂y + C∂z + i

c
D∂t

( )
A∂x + B∂y + C∂z + i

c
D∂t

( )
.

Any solutions require AB+ BA = · · · = 0 while A2 = B2 = · · · = 1, which cannot
hold in any of the usual number systems. Dirac realised, however, that this formal
relation can be satisfied if A, B, etc are matrices. This modification required a

7 See, for instance, Pincock [2012]. Bueno and Colyvan [2011] emphasise the inferential role of mathematics, but
are explicit [ibid.: 352] that they are building on, not repudiating, the representational account (their ‘mapping
view’). For the purpose of raising the puzzle, we can be neutral on the precise details.
8 This is hinted at by Wigner [1960], but receives its clearest development by Steiner [1998] (a book that also con-
tains illuminating discussion of many examples).
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reconceptualization of the wave function as including four components (as opposed to
Pauli’s two and Schrödinger’s one). This in turn generated novel solutions to the orig-
inal equation, seemingly corresponding to ‘negative’ energy levels. On the basis of these
solutions, Dirac predicted the existence of positrons (‘anti-electrons’)—a prediction
which, remarkably, was later empirically borne out by Anderson in 1932. So, in this
case, as in others like it, mathematics played an important role in the generation of a
scientific theory, not just in its formulation.

(I) and (II) give rise to a prima facie challenge: together, they appear to be striking—
in need of explanation. From (I), mathematics is a methodologically a priori discipline
in which aesthetic considerations are essential—either constitutive of mathematics, or
normative for identifying valuable mathematics, or necessary to explain the develop-
ment of the subject. This in itself raises no obvious puzzle. But it is extremely surprising
when combined with (II), for the mathematics that arises from this empirically discon-
nected methodology proves to be highly significant to natural science.

Consider, first, the role of mathematics in the formulation of scientific theories. One
way in which this can come to seem extremely puzzling is that, in many cases, math-
ematics precedes applications. Take, for instance, Wigner’s example of infinite dimen-
sional Hilbert spaces, developed on purely mathematical grounds (seemingly very
distant from applications), before becoming of crucial importance to quantum mech-
anics. This suggests that aesthetic criteria led mathematicians to devise structures
that turned out to mirror significant aspects of the physical world. To use an evocative
analogy, it would be rather as if artists had, led by their aesthetic sensibilities, conceived
of beautiful abstract paintings, only for it to be discovered later that scenes closely
resembling these paintings occur in some remote part of the galaxy.

The role of mathematics in scientific discovery is no less prima facie puzzling. Con-
sider, again, Dirac’s equation. This is a case where, in seeming miraculous fashion,
mathematics led to a novel scientific theory, which was later experimentally vindicated.
In taking the ‘negative’ solutions as physically significant, as opposed to mere artefacts
of the presentation, Dirac extrapolated far beyond the available empirical evidence: and,
what is more, he did so primarily on the basis of the mathematical elegance of the result-
ing picture.

It is hard to argue that the combination of (I) and (II) is striking, since necessary
and sufficient conditions for ‘strikingness’ are notoriously difficult to formulate. But,
in addition to the anthropological evidence that many intelligent (indeed, Nobel-
prize-winning) commentators have found them to be so, our case shares some impor-
tant features with paradigm examples of striking facts. One is that each of (I) and (II)
renders the other unexpected, in the sense that their conjunction would be hard to
predict in advance. Suppose that one is told that a certain practice is carried out
in the armchair and is largely informed by aesthetic considerations. One is unlikely
on that basis to have a high credence that it would prove highly significant to science!
The other relevant point is that we have a link between two apparently disparate
domains—on the one hand, the physical world, and, on the other, pure mathematics
and aesthetic features (beauty, elegance, and the like) prima facie detached from the
subject matter of science. In light of the disparateness of the domains, it is unsatisfy-
ing to accept that the link between them is merely coincidental; again, it cries out for
explanation.

The rest of the paper aims to meet the challenge head-on. First, however, it is worth
clarifying and responding to a couple of immediate reactions.
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It bears emphasis that the challenge depends little on one’s underlying view of math-
ematics. In stating it, no doctrine about mathematical objects, or truth, or realism, or
epistemology was assumed—just that mathematics is applicable to science, while meth-
odologically a priori and aesthetically informed. One might think that it can be dis-
armed if—as certain proponents of mathematical fictionalism hold—mathematics
can in principle be eliminated from scientific discourse. This is a controversial claim,
requiring the success of an ambitious technical program.9 But, even if its success is
granted, at best this addresses any challenge arising from the representational role of
mathematics. Its role in the discovery of scientific theories is still salient, and still
requires explanation. The challenge is therefore robust across many conceptions of
mathematics.10

Similarly, the challenge does not obviously rely on any specific view of the nature of
aesthetics. It might be thought that it arises only on a roughly subjectivist account,
according to which aesthetic judgments are merely the projection of parochial and
species-specific human attitudes.11 But this is not so: even if one holds an ‘objectivist’
view, according to which aesthetic judgments track objective, mind-independent, aes-
thetic properties, it still remains to be explained why these properties—whose subject
matter is prima facie distinct from that of natural science—prove relevant to empirical
inquiry. The issue is most pressing on non-naturalist versions of the view, according to
which aesthetic properties are distinct from any natural properties. But even naturalist
versions, on which aesthetic properties are part of the natural order, still bear an expla-
natory burden: supposing that (say) ‘beauty’ picks out mind-independent natural prop-
erty N, why should our tendency to develop mathematics with property N be conducive
to its applicability? A specific conception of aesthetics does not obviate the need for an
explanation; at best, it might be a starting point for providing one.12

Last, it might be argued that the fact that some aesthetically inspired mathematics is
empirically applicable isn’t enough to generate a puzzle; after all, what about all of the
mathematics that does not find a use in applications?13 For a real puzzle, the thought
continues, we would to somehow quantify just ‘how much’ mathematics is applicable,
and then show that it exceeds the ‘quantity’ of non-applicable mathematics to some
striking degree. While there might be something to this response, it mistakenly
conflates considerations that undermine the strikingness of our putatively puzzling
facts with those that constitute a possible explanation. If the point is right, it doesn’t
make the initial fact of applicability any less striking; rather, it potentially explains it,
if the quantity of pure mathematics produced is large and varied enough to make it
likely that at least some is applicable by chance alone. With that said, such an expla-
nation would in some sense be unsatisfying: ultimately, the success of mathematics
would be explained by sheer chance. By contrast, the explanation that I’ll develop in

9 Field [1980] is the locus classicus.
10 For further arguments that the challenge does not rely on a particular view of mathematics, see Colyvan
[2001b].
11 Steiner [1998] seems to believe that this subjectivist view is responsible for the force of the puzzle; Pincock
[2012] attempts to disarm it by denying subjectivism. I believe that both are vulnerable to the point made in
this paragraph.
12 Thanks to the Editor for pressing me to clarify here. The explanation offered in section 4 is in fact neutral
between different conceptions of aesthetics: since it relies only on a reliable correlation between aesthetic prop-
erties in mathematics and certain non-aesthetic properties concerning theoretical virtues, nothing further needs to
be assumed about the nature of the aesthetic properties in question.
13 Thanks to a referee for prompting clarification here.
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the rest of the paper is more satisfying, because it shows why the applicability of math-
ematics is by no means accidental. It is to that explanation that we now turn.

3. Mathematical Virtues beyond the Aesthetic

The aim of this section is to reconsider the conception of mathematics, responsible for
much of the force of the puzzle, as a priori and developed on the basis of aesthetic con-
siderations. I’ll argue that it is highly misleading to think of mathematical virtues—the
features prized by mathematicians in the course of inquiry—as exclusively aesthetic and
detached from the empirical world. In particular, I’ll consider a virtue that I’ll call ‘inter-
estingness’ or ‘seriousness’, and I’ll argue that many structures actually studied in con-
temporary mathematics and considered mathematically serious have their roots, if we
are willing to look back far enough, in abstractions or generalisations of physical or
otherwise empirically generated concepts. The subject matter of pure mathematics is
thus, in a good sense, still ‘about’ the empirical world, even if the connection can
only be seen at a very high level of abstraction.

Those—like Steiner and Wigner—who conceive of mathematics as placing serious
weight on aesthetic considerations often turn to G.H. Hardy’s A Mathematician’s
Apology for support, for in the famous passage cited in section 2 he expresses the
view that beauty is a necessary condition for mathematics.

But, elsewhere in the same book, Hardy [1940: 88] appeals to another criterion for
distinguishing between good and bad mathematics—namely, its seriousness:

A chess problem is genuine mathematics, but it is in some way ‘trivial’ mathematics. However
ingenious and intricate, however original and surprising the moves, there is something essential
lacking. Chess problems are unimportant. The best mathematics is serious as well as beautiful
—‘important’ if you like, but the word is very ambiguous, and ‘serious’ expresses what I mean
much better… The ‘seriousness’ of a mathematical theorem lies, not in its practical conse-
quences, which are usually negligible, but in the significance of the mathematical ideas which
it connects. We may say, roughly, that a mathematical idea is ‘significant’ if it can be connected,
in a natural and illuminating way, with a large complex of other mathematical ideas.

And indeed, for Hardy [1940: 90], the two notions—beauty and seriousness—are
related:

The beauty of a mathematical theorem depends a great deal on its seriousness, as even in poetry
the beauty of a line may depend to some extent on the significance of the ideas which it contains.

For Hardy, seriousness is an additional constraint upon good mathematics. Note that
beauty and seriousness might, but need not, line up with each other: it is possible for
some mathematics to have significant and illuminating implications for other math-
ematics, without being aesthetically appealing in the slightest (although, as the discus-
sion in the next section will reveal, I doubt that the two notions are entirely
unrelated.) I would, however, like to take issue with one aspect of Hardy’s notion
of seriousness and consequently to offer a friendly amendment so as to better
capture the spirit of the idea.

Hardy claims that it is enough that a certain piece of mathematics sustain connection
with a suitably large number of other pieces of mathematics. But surely the sheer
number of connections does not matter. For, as Hardy points out, there exists much
‘trivial’ or unimportant mathematics—probably as much as, if not more than, there
is important mathematics. Surely we would not say that results somehow connected
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with a large quantity of trivial mathematics are thereby important. Rather, the impor-
tance of a piece of mathematics is more plausibly a function of the importance of the
mathematics with which it is connected. Borrowing an analogy from epistemology,
the correct picture of seriousness looks more foundationalist than coherentist; and,
as that analogy suggests, what will be needed are the analogues of foundationally
justified beliefs—mathematics that enjoys, so to speak, the status of being ‘foundation-
ally serious’. How might a piece of mathematics attain such status?

The great algebraic topologist Saunders Mac Lane [1986: 6] begins his book Math-
ematics: Form and Function as follows:

Mathematics, at the beginning, is sometimes described as the science of Number and Space—
better, of Number, Time, Space, and Motion. The need for such a science arises with the
most primitive human activities. These activities presently involve counting, timing, measuring,
and moving, using numbers, intervals, distances, and shapes. Facts about these operations and
ideas are gradually assembled, calculations are made, until finally there develops an extensive
body of knowledge, based on a few central ideas and providing formal rules for calculation.
Eventually this body of knowledge is organized by a formal system of concepts, axioms,
definitions, and proofs.…Mathematics deals with a heaping pile of successive abstractions,
each based on parts of the ones before, referring ultimately (but at many removes) to human
activities or to questions about real phenomena.

There are two central points made here by Mac Lane: first, the conceptual roots of
elementarymathematics grow out of, so to speak, certain basic modes of understanding
and interacting with the physical world; and, second, that contemporary mathematical
knowledge—even in its abstract, axiomatic form—can ultimately be traced back to these
fundamental sources. The picture that he offers is a plausible rational reconstruction of
the historical development of mathematics, according to which—to give the com-
pressed version—a few fundamental axiomatic theories are formulated initially to
capture certain processes or phenomena arising within the natural world or our inter-
action with it, and then become available for autonomous study without explicit refer-
ence to the motivating examples.14 A similar viewpoint is propounded by Bourbaki, the
notoriously formalistically-minded French collective of mathematicians. In one sense,
their view is an orthodox form of structuralism, according to which mathematics is
the study of abstract structures. But, for our purposes, the interesting part of their
view is that not all structures are created equal: the organizing centre of the subject,
for Bourbaki, consists of a small number of ‘mother-structures’, including the natural
numbers, the Euclidean plane, the real line, as well as topological structures, order struc-
tures, and algebraic structures. And what is striking about these examples is that a
plausible case can be made that each originates out of a desire to describe—albeit in
a distinctively mathematical, general, and abstract way—certain features of the
natural world.

A natural idea, then, is that these basic structures, arising in a fundamental way from
the empirical study of nature, play precisely the role of ‘foundationally serious’ math-
ematics, adverted to above. In short, the idea is that there are mathematical virtues
other than aesthetic ones, such as importance or seriousness; furthermore, mathematics
is viewed as important or serious to the extent that it illuminates our understanding of
these basic structures, or that it illuminates our understanding of mathematics that illu-
minates our understanding of these structures, and so on.

14 See Maddy [2008] for a historically sophisticated and highly developed account along these lines.
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I take it that this is a plausible explanation of why, say, the Langlands program is
one of the most important research programs in mathematics today: the Langlands
conjectures lie at the confluence of algebraic number theory, the theory of auto-
morphic forms, and the representation theory of algebraic groups, all of which are
manifestly illuminative of the natural numbers, functions of complex variables, and
abstract algebra, all of which in turn inform our understanding of the Bourbakian
mother-structures.15

If all of that is right, it would be highly misleading to view mathematics as shaped
solely by aesthetic considerations; seriousness also plays a significant role. Writers
like Wigner and Weinberg tend at times to suggest that the role of pure mathematics
is the development of formal descriptions of structures, on purely aesthetic grounds
and isolated from empirical concerns, some of which then, mysteriously, turn out to
be applicable. But, on the alternative view that I have been urging here, this is a
mistake: as Mac Lane emphasises, from its very beginnings, mathematics has been
motivated by the desire not only to describe various aspects of the physical world,
but also to provide systematic formal theories of various human activities and oper-
ations within it. These points in themselves go a considerable way towards responding
to our initial explanatory challenge.

4. Aesthetic Judgments, Theoretical Virtues

With all of that said, however, some of the original puzzlement may persist. After all,
there are still many cases (for instance, Wigner’s example of the application of
infinite dimensional Hilbert spaces in quantum mechanics) where physics found a
use for mathematics that really did primarily arise on aesthetic grounds, with no appar-
ent motivation stemming from the major empirical structures or human activities just
discussed. It is not at all obvious why mathematics of this kind should be relevant to
applications.

The aim of this section is to meet this residual puzzle by clarifying the role of aes-
thetic virtues and judgments in mathematics. To do so, we’ll examine two case
studies of aesthetically appealing mathematics—Galois theory, and a proof of the
Kac-Erdős theorem within probabilistic number theory. The main claim to be
defended is that the aesthetic properties to which mathematicians commonly
appeal are far less straightforwardly aesthetic than one might presume. More specifi-
cally, I will argue that positive aesthetic judgments in mathematics, in a wide range of
cases, are correlated with more general theoretical virtues—properties like simplicity,
internal coherence, surprisingness, unificatory power, explanatory depth, epistemic
tractability, fruitfulness, generalisability, importance, parsimony, and so on. In light
of this connection, the applicability of aesthetically virtuous mathematics is not so
puzzling after all.

4.1. Galois Theory

Galois theory is commonly regarded as one of the most beautiful theories in mathemat-
ics. Stephen Weintraub [2008: ix] writes, in a preface, that

15 The Langlands program is viewed as being of paramount importance within mathematics, wtih dozens of Abel
Prizes and Fields Medals having been awarded for progress within it. See Gannon [2006] for a readable account.
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Galois theory has a well-deserved reputation as one of the most beautiful subjects in mathemat-
ics. I was seduced by its beauty into writing this book.

Similarly, Ian Stewart [2004: 135] calls the Fundamental Theorem of Galois theory one
of ‘the most beautiful results in mathematics’. Let’s briefly examine it, before drawing
some lessons.16

The roots of Galois theory are found in one of the oldest mathematical endeavours—
namely, finding solutions to polynomials, equations of the form

a0t
n + a1t

n−1 + . . .+ an−1t + an = 0

with t a variable and the coefficients ai elements of some field K .17 The highest power of
t is called the degree of the polynomial.

Which polynomials have solutions in radicals—that is, are built up from the coeffi-
cients ai using the operations of addition, subtraction, multiplication, division, and nth

roots? At the time of Galois, the quadratic formula—that is, for polynomials of degree 2
(and bane of schoolchildren everywhere),

t = −b+
����������
b2 − 4ac

√

2a

—was well-known, as were much more unwieldy cubic and quintic formulas due to
Tartaglia and Ferrari. But polynomials of quintic degree and higher remained, in
general, unsolved.

Take a polynomial f (t) = a0tn + a1tn−1 + . . .+ an−1t + an. We can construct a new
field, L (perhaps identical to K , but not always so), called the ‘splitting field’ of f (t), with
the special property that L contains precisely enough additional elements to fully factor-
ize f—in other words, all possible solutions of f (t). Galois theory studies the relation
between the original field K and the splitting field L. Surprisingly, this captures a
large amount of information concerning the structure of solutions to f (t).

The key is to think about all of the possible permutations or rearrangements of the
solutions of f .18 In fact, for any field extension, all permutations of this kind form a
group—the Galois group GL:K .

19 One of Galois’s main insights was to notice there is
a one-one correspondence between

. the subgroups of the Galois group GL:K and

. the subfields of L containing K (that is, the M such that L:M:K).

This correspondence is specified by associating each subgroupH of G with the setH† of
all elements of L fixed by all of the automorphisms inH (which turns out to be a subfield
of L). Conversely, each subfield M of L is associated with the group M∗ := GM:K—that
is, the set of automorphisms of K that fix all of the elements of M. Furthermore, if L:K
satisfies certain mild conditions (normality and separability), then in some sense no

16 For a more detailed exposition, see Stewart [2004], and see Kiernan [1971] for a comprehensive history.
17 A field is a set with recognisable analogues of addition, subtraction, multiplication, and division—a generalis-
ation of the structure common to the rational numbers, the real numbers, and the complex numbers.
18 Technically: the automorphisms on L that hold K fixed.
19 In other words, we can compose or invert any of the permissible permutations of solutions and end up with
what is still a permissible permutation.
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information is lost by looking at things in terms of the subgroups of GL:K , for ∗ and † are
inverses: (M∗)† = M for each subfield M of L.

The details of this correspondence are sometimes called the Fundamental Theorem
of Galois theory. Using it, we can prove the deep result that polynomials of degree 5 and
above cannot, in general, be solved in radicals.

Put in terms of field extensions, a polynomial f (t) over K is soluble if there is a series
of fields

K # K1 # . . . # Kn−1 # Kn = L

where L is a splitting field for f (t). We can say more: each intermediate field Ki must be
generated by adjoining an nth root of some element from Ki−1. With the Fundamental
Theorem in hand, the question suggests itself: what can we say about the following
induced series of groups?

L† = G0 # G1 # . . . # Gn−1 # Gn = K†

Now, there is a notion of ‘division’ of groups that is applicable here20, and it follows that
each of the Gi/Gi+1 is Abelian: that is, the order of permutations does not matter. And,
conversely, it turns out that if a polynomial generates such a series (with Abelian quo-
tients) then it is soluble in radicals! Fundamentally, the reason is that a soluble poly-
nomial is always obtainable by adjoining pth roots of elements of the base field
(where p is prime); and, each time that such an element is adjoined, the corresponding
quotient group is always Abelian.

The Galois group of a polynomial of degree n is in general isomorphic to a subgroup
of the symmetric group on n elements, Sn (that is, the group of possible permutations of
n different things), and it is always possible to find a polynomial of degree n whose
Galois group is isomorphic to the whole of Sn. Here, then, is the explanation of the
general solubility of polynomials of degree 2, 3, and 4: every subgroup of S2, S3, and
S4 can be written as a series with Abelian quotients. But they are the exception: for
n ≥ 5, it’s possible to show that Sn cannot be written in that form. And, for this
reason, quintics (and higher) are, in general, insoluble.

So much for the whirlwind tour of Galois theory; I hope that I have conveyed its
flavour. Several features are worth bringing out in more detail.

The core of Galois theory is the correspondence introduced in the Fundamental
Theorem. This allows us to translate difficult questions about the structure of solutions
to a given polynomial into questions about the structure of its Galois group. The
problem is thus simplified in many ways—some subtle, some obvious. Groups are in
many ways simpler algebraic objects than polynomials and field extensions, and are
much better understood (for instance, groups that possess chains of ‘divisible’ sub-
groups are easy to classify). Some of the specificity of the polynomial under examination
is lost by examining its Galois group, for, in general, many different polynomials have
the same Galois group. And yet, as the success of the theory shows, the move to its
Galois group preserves precisely enough information about a polynomial to analyse
its solubility. It provides, as is sometimes said, the natural setting for conceiving of
the problem.

20 Because Gi is normal in Gi+1, we can form quotient groups.
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Not only does Galois theory allow us to prove that the quintic and higher cannot, in
general, be solved; it also explains why this is the case. It is generally recognised, both
among mathematicians and among philosophers of mathematics, that there is a distinc-
tion to be drawn between explanatory and non-explanatory proofs, although it has
proven difficult to say more about what this distinction consists in, and the literature
on the topic is still in its early stages. But, on any plausible account, the Galois-theoretic
treatment of the insolubility of the quintic is a successful explanation. Unlike many
proofs, it provides a kind of ‘understanding why’: once it has been worked through
and understood, any mystery about the explanandum (what is so special about quin-
tics?) is almost entirely dispelled.

Related to issues of explanation, Galois theory is described by Stewart [2004: vii] as a
‘showpiece of mathematical unification’. There are two senses in which this is true. First,
it brings together ideas and machinery from many different parts of the subject, and it
leads (see below) to many more connections still. But, second, the theory allows for its
subject-matter—polynomials—to be understood in a unified way. Such unity is by no
means guaranteed in mathematics. Contrast, for instance, the study of partial differen-
tial equations. While there has been much success in solving particular classes of PDEs,
a general theory has proven difficult to find.21 There is no a priori reason that poly-
nomials should have turned out to be so susceptible to a unified treatment; that they
do is itself a remarkable fact.

The theory introduces, in natural ways, ideas that are fruitful when further devel-
oped. David Corfield [2003: 205] helpfully distinguishes five ‘degrees’ of fruitfulness,
when a piece of mathematics

(1) allows new calculations to be performed in an existing problem domain, possibly leading to
the solution of old conjectures;

(2) forges a connection between already existing domains, allowing the transfer of results and
techniques between them;

(3) provides a new way of organising results within existing domains, leading perhaps to a clar-
ification or even a redrafting of domain boundaries;

(4) opens up the prospect of new conceptually motivated domains; and
(5) reasonably directly leads to successful applications outside of mathematics.

Galois theory clearly succeeds in all five respects except perhaps the last (the issue here
concerns simply the directness of its applicability). Let me say something briefly about
the others.

(1) The ‘old’ problem—one of the most fundamental in mathematics—about the
solubility of polynomials was spectacularly resolved in a theoretically satisfying way.

(2) This was done by assimilating questions concerning the solubility of poly-
nomials to algebraic questions concerning the structure of groups, allowing group-the-
oretic methods to resolve algebraic questions.

(3) Galois’s work precipitated a radical reorientation of algebra: before, it con-
cerned primarily the solution of equations, but afterwards it encompassed the study
of structures such as groups, fields, rings, etc, in their own right. Indeed, the very
notion of a group was introduced by Galois himself, and the first steps in group
theory were pursued by him in developing the theory of solubility.

21 Klainerman [2010: 279] reflects a prevalent view that PDEs are too disparate a class to admit of a general theory:
‘PDEs, in particular those that are nonlinear, are too subtle to fit into a too general scheme; on the contrary, each
important PDE seems to be a world in itself.’

94 DANIEL WAXMAN



(4) The range of mathematics directly or indirectly motivated by Galois theory is
vast. To pick just one example, consider the generalisation (by Sophus Lie) of Galois
theory applied not to polynomial equations but to differential equations—that is,
equations of the form a0Dny + a1Dn−1y + . . .+ any, where D is a differential operator.
The groups associated with such equations—Lie groups—are widely studied in math-
ematics and extensively applied in physics. Lie groups admit a manifold structure
and capture the idea of continuous symmetry (for instance, the rotation group of a
sphere). Consequently, they are of great interest in many physical applications that
involve continuous dynamical systems.22

4.2. Probabilistic Number Theory

Our second example is taken from probabilistic number theory. Despite the reputation
of number theory as one of the purest branches of mathematics, probabilistic number
theory is in fact highly applicable, most notably within cryptography. For example, the
effective security of many contemporary cryptographic algorithms depends on the fact
that tests for primality and prime factorisation are computationally expensive. In order
to obtain results about the expected running time of these operations, accurate methods
for estimating the distribution of prime numbers (as well as, for instance, so-called
‘smooth’ numbers, which possess only small prime factors) are needed. One of the
key results in providing such estimates is the Kac-Erdős theorem.

As is well known, every natural number can be uniquely factorised into primes. Let
v(n) be the number of prime factors of n. The Hardy-Ramunujan theorem tells us that,
for almost all integers23, and for any real-valued function c that tends to infinity as n
tends to infinity,

|v(n)− log (log (n))| , c(n)
�������������
log (log (n))

√
.

The Kac-Erdős theorem can be seen as a natural generalisation of this result. Roughly, it
states that the probability distribution of

v(n)− (log (log n))�������������
(log (log n))

√
is a normal distribution.

One reason why this proof is so interesting for our purposes is because it is explicitly
discussed by Timothy Gowers [2000], in a lecture on the importance of mathematics, as
a beautiful proof of a beautiful result. Better still, Gowers takes the time to give a number
of reasons why he finds the result to be so beautiful. Here are the five reasons that he
gives, with some added commentary.

First, perhaps least interestingly, Gowers notes that the very shape of the distribution
—a bell curve—is itself aesthetically pleasing.

Second, Gowers suggests that the theorem possesses an appealing simplicity. One
reason is the role played by normal distributions, which arise extremely naturally
within statistics and are the subject of extensive study because they govern a great
many statistical phenomena. In fact, there is a well-defined sense in which normal

22 See, that is, Gilmore [2008].
23 That is, if g(m) is the number of integers less than m for which the inequality fails, then

g(m)
m

� 0 as m � 1.
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distributions are as simple and as natural as possible: the central limit theorem states
that, in certain (mild but laborious-to-specify) conditions, a sufficiently large number
of independent random variables will give rise to a normal distribution. In addition
to its simplicity, the theorem is also an example of mathematical unification, by unifying
the theory of prime numbers (arising from pure number theory) and the theory of
normal distributions (arising from statistics).

Third, the theorem is unexpected. As Gowers [ibid.: 19] puts it,

Behind the disorder and irregular behaviour of the primes there lies the simplicity and regularity
of the normal distribution. This is particularly surprising because the primes are defined deter-
ministically (there is no choice about whether a given number is a prime or not) while the
normal distribution usually describes very random phenomena.

Fourth, the phenomenon uncovered is not one that could have been appreciated by
‘brute force’means: the computational power required to calculate large enough v(n) to
give a reasonable and recognisable approximation to a normal distribution is far beyond
feasible limits. Thus, the result is one that is, in a sense, attributable purely to theory
alone: the underlying pattern could only have been appreciated via ingenious theorising,
and not, realistically, via experimental or inductive evidence.

Fifth, the proof of the theorem is [ibid.] ‘very satisfying’. He summarises it as follows:

Step 1. When n is large, most numbers near n have roughly log (log n) prime factors. (That is,
with a few exceptions, ifm is near n then you can approximate the number of prime factors ofm
by taking its logarithm twice.)…

Step 2. Therefore, most prime factors of most numbers near n are small. This follows because a
significant number of large prime numbers would multiply to a number bigger than n.

Step 3. If m is chosen to be a random number near n, then the events ‘m is divisible by p’,
where p is a small prime, are roughly independent. For example, if you know that m is
divisible by 3 and 5, but not by 11, it gives you almost no information about whether m
is divisible by 7. By a technique known as the Brun sieve, this means that if we think of
the events as being exactly independent, then the conclusions we draw from this will be
approximately correct.

Step 4. If these events were exactly independent, then a normal distribution would result,
because (subject to certain technical conditions that hold here) it always arises when one
counts how many of a large number of independent events have occurred.

One reason why the proof is so satisfying is its susceptibility to being described in such
simple shorthand terms. Naturally, a fully admissible version of the proof would be
much longer and technically formidable. But the presence of vague descriptions such
as ‘n is large’ or ‘roughly n factors’ or ‘most numbers near n’—all of which would
immediately suggest the appropriate precisifications to the ears of a number-theorist
—allows the key ideas of the proof to be easily surveyed and its core strategy to be
understood. No doubt, there is the possibility of being fooled into a false sense of under-
standing if one does not fully realise the complications added by the requirement of
rigour. But, having worked through the proof, it is hard not to regard this sketch as
encapsulating it: all of the essential conceptual moves are there.

A final reason, I take it, why the proof is satisfying is that it is genuinely explanatory:
it shows not just why a normal distribution happens to arise in the foundations of the
theory of prime numbers, but furthermore why such a distribution is to be expected in
light of other known facts about the primes.
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4.3. Aesthetic Properties and Theoretical Virtue

With the examples in hand, let us draw some lessons. The first is simple: positive aes-
thetic appraisals in mathematical contexts are reliably correlated with the presence of a
number of other properties. As we saw, Gowers explicitly includes such considerations
as simplicity, unificatory power, suprisingness, explanatory depth, and epistemic tract-
ability as contributing to the beauty of the Erdős-Kac theorem that he discusses. And
the brief tour of elementary Galois theory suggests that, if one seeks to explain why
the theory is attractive or elegant or beautiful, the story appeals to similar features—
the surprising Galois correspondence between fields and groups, the capacity of the
theory to motivate and explain the answer to deep and central mathematical questions
via satisfying explanatory proofs, its unification of several key mathematical tools and
ideas, the importance of its consequences, or its immensely fruitful consequences in the
future development of mathematics. What is more, the correlation is not plausibly a
mere accident or matter of luck: as we have seen, when attempting to explain or ration-
alize their positive epistemic judgments, reflective mathematicians appeal to properties
like those just identified. There is every reason to believe, therefore, that the correlation
is robust in a way that would lead us to expect the presence of these properties in a wide
range of cases of positive epistemic appraisal in mathematics.24

So, aesthetic judgments in mathematics are reliably correlated with a host of non-
aesthetic properties. It is highly significant that those we have seen arise—simplicity,
unificatory power, explanatory depth, epistemic tractability, surprisingness, the ability
to forge connections between seemingly disparate subject-matters, fruitfulness, etc.—
are precisely those often discussed in the philosophy of science, confirmation theory,
and more recently within metaphysics too, under the heading of ‘theoretical virtues’.
The relevance to our original explanatory challenge should by now be becoming
clear. At the outset, the sense of mystery arose largely from the concern that applicable
mathematics essentially involves aesthetic considerations of a sort detached from the
physical world and scientific inquiry. But no analogous concern can arise for theoretical
virtues, for, although their precise role is contested, it is almost impossible to deny that
they play a legitimate and central role in scientific inquiry.

On one prominent cluster of views, associated with a broadly realist perspective,
theoretical virtues are both truth-conducive (in that their presence makes a theory
more likely to be true) and relevant to issues of confirmation and rational theory
choice (in that, when faced with a choice of theories to believe or develop, it is
rational—there are ‘genuinely epistemic’ reasons—to prefer theories possessing these
features).25 But even those who reject this strong realist view nevertheless tend to
agree that theoretical virtues are important and desirable within science, even if they

24 This correlation might itself stand further explanation. One possible, relatively deflationary, approach might look
for psychological reasons why we tend to find properties like simplicity, explanatory depth, importance, fruitful-
ness, to be beautiful or elegant when manifested within mathematics. But perhaps a deeper explanation is poss-
ible: for instance, perhaps mathematical beauty or elegance is grounded in properties like simplicity, explanatory
depth, importance, fruitfulness, etc.; or perhaps aesthetic judgments serve as a way of expressing the presence of
such properties. While these suggestions are intriguing, evaluating them would require a far more detailed dis-
cussion of aesthetic properties and judgments in mathematics than I am able to provide here. For the purpose of
resolving the explanatory challenge, the fact of a reliable correlation is enough.
25 See, for instance, Psillos [2005]. ‘Epistemic’ here means something like ‘truth-directed’, as opposed to ‘merely
pragmatic’: it is not meant to cover other notions of epistemic appraisal, such as ones involving epistemic respon-
sibility or deontological considerations (although it is an open question how these relate to truth-directedness: for
discussion, see Alston [2005]). Thanks to the Editor for pressing me for clarification on this point.
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ultimately play only a pragmatic or heuristic or guiding role in the process of scientific
discovery.

I do not mean to deny that many further important questions arise. How are theor-
etical virtues best understood? How are they to be weighed against one another? How (if
at all) are they related to truth? Any attempt to answer these questions would be beyond
the scope of this paper. Perhaps they might even generate additional explanatory chal-
lenges—to explain why these features are truth-conducive, or relevant to rational theory
choice, or even important within science only in a merely pragmatic sense. But even if
such questions are felt to persist, we have come a long way from our original challenge.
The seeming mystery of the applicability of an a priori discipline driven (in part) by
aesthetic considerations has, at the very least, been reduced to a more general—and,
there is every reason to think, a more tractable—cluster of issues.

5. Conclusion

We began with a puzzle of applicability arising, in large part, from a conception of
mathematics according to which it is methodologically a priori and largely informed
by aesthetic judgments. I have not argued against that conception’s central claims.
What I have tried to offer are some major qualifications, intended to reconcile it with
the empirical origins of many pure mathematical concepts and the ways in which aes-
thetic judgments systematically track the pursuit of theoretical virtue. If I am right, the
resulting account does much to demystify the use of mathematics in the formulation
and discovery of scientific theories. Mathematics is not merely an armchair, aesthetic
discipline; rather, it provides science with theories, concepts, and techniques that
relate—in fruitful, simple, unifying, and explanatory ways—to structures found in the
physical world. It is not so unreasonable, after all, that it finds outstanding success in
applications.26
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