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Abstract

In 1936, Gerhard Gentzen famously gave a proof of the consistency of Peano
arithmetic. There is no disputing that Gentzen provided us with a mathematically
valid argument. This paper addresses the distinct question of whether Gentzen’s
result is properly viewed as a proof in the epistemic sense: an argument that can
be used to obtain or enhance justification in its conclusion. Although Gentzen
himself believed that he had provided a “real vindication” of Peano arithmetic,
many subsequent mathematicians and philosophers have disagreed, on the basis
that the proof is epistemically circular or otherwise inert. After gently sketching
the outlines of Gentzen’s proof, I investigate whether there is any epistemically
stable foundational framework on which the proof is informative. In light of this
discussion, I argue that the truth lies somewhere in between the claims of Gentzen
and his critics: although the proof is indeed epistemically non-trivial, it falls short
of constituting a real vindication of the consistency of Peano arithmetic.

1. Motivation and Preliminaries

The aim of this paper is to examine a famous and very special case of a mathemat-
ical consistency proof: Gentzen’s proof of the consistency of Peano Arithmetic (PA),
the most widely accepted formal axiomatization of arithmetic.1 There is no doubt that
Gentzen provided a proof in the mathematical sense of the term: a rigorous, formaliz-
able deduction, in which the conclusion is shown to be derivable by recognizably valid
steps from a set of axioms (usually, albeit informally, taken to be set theory as codi-
fied by Zermelo Fraenkel Set Theory with the Axiom of Choice (ZFC) or some other
generally accepted foundational theory whose status is, for the purposes of the deriva-
tion, not in question). The question this paper seeks to answer, by contrast, is whether
Gentzen’s result is a proof in a distinct epistemic sense: something like a procedure
or demonstration capable of cogently providing epistemic support for its conclusion.
(This will be made more precise as we proceed). An easy way to see that the notions

1See Gentzen [1969], Chapters 4 and 8.
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come apart is that for anyone working within a given set of axioms, the trivial deduc-
tion of one of the axioms themselves will always be possible; yet nobody, I take it,
would argue that a deduction of this sort yields any epistemic gain. The obvious fact
that a proposition can be derived in any theory which contains it as an axiom provides
it with no epistemic support whatsoever. Naturally Gentzen’s proof is very far from
being a trivial one-line proof; nevertheless, one of the questions that will occupy us is
whether it can be shown to exhibit some analogous kind of epistemic defect.

Before discussing the proof, some brief motivation is in order. The status of Gen-
zen’s proof relates to the more general question of whether and how we are justified
in believing in the consistency of our best mathematical theories – a question which
I believe is central to the epistemology of mathematics. Many of us are are strongly
inclined to believe that our best theories – paradigm cases being theories like PA and
ZFC – are in fact consistent; but on reflection, it is not at all obvious that there are any
rational grounds for possessing this conviction, let alone for possessing it as strongly
as it is held. We know, from Gödel’s second incompleteness theorem, that if T is a
consistent theory containing a minimal theory of arithmetic, then T fails to prove its
own canonical consistency statement ConT.2 So if we do indeed possess justification
in the consistency of a given theory, there are basically only two possibilities as to its
source: either from proving the theory’s consistency within some other theory or from
a method distinct from mathematical proof altogether. Whichever of these disjuncts
obtains, the resulting account promises to illuminate the architecture of mathematical
justification.

Another reason for interest in the justification of consistency is that it (and closely
related notions like coherence or conservativeness) play a key role in many live views
in the philosophy of mathematics. A nice illustration is provided by structuralism,
whose motivating slogan is that mathematics is the study of abstract structures. This
slogan can be interpreted in many ways, but the most prominent involve either reifying
structures (“ante rem structuralism”) or interpreting away talk of structures by speaking
of all possible systems of a certain kind (“in re structuralism”). On both kinds of view,
consistency or closely related notions play a fundamental role. A pressing question fac-
ing the ante rem structuralist concerns the ontology of structures: which structures ex-
ist? The most influential answer is Stewart Shapiro’s Coherence Principle: every coherent
theory characterizes a structure (or class of structures). And although “coherence” here

2See for instance Smith [2012]. I assume throughout that we are speaking of recursively axiomatized
theories. The “canonical” consistency statement is one constructed using a provability predicate that
perspicuously represents the definition of the informal notion of provability and satisfies the Bernays-
Hilbert-Lob derivability conditions. I will assume without further comment that the canonical consistency
statement for T expresses the intuitive property of consistency, and that we are justified in believing this;
thus I slide between the informal claim that some theory is consistent, and the mathematical claim ConT.
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is not exactly the same as consistency, it is a kind of second-order analogue of it – in-
deed, for first-order theories, coherence and consistency are co-extensional.3 Similarly,
the in re structuralist faces a pressing question: how are mathematical statements to be
interpreted? The most influential answer is due to Geoffrey Hellman. A statement of
arithmetic φ is roughly to be interpreted as involving two components: (i) a claim that
in any possible ω-sequence – that is, about any possible system of objects satisfying the
Peano axioms – the analogue of φ holds; and (ii) that some ω-sequence is possible.4 The
relevant notion of possibility is not, according to Hellman, metaphysical or physical;
rather it is a “mathematico-logical” notion. Hellman’s notion of mathematico-logical
possibility is, like Shapiro’s coherence, a kind of second-order analogue of consistency;
and again, when first-order theories are in question, it is co-extensional with consis-
tency. So structuralism assigns a central role to consistency, or something essentially
similar to it, as far as first-order mathematics is concerned.

Structuralism is not alone here; there is a strong case to be made (although I will
not attempt to make it here) that consistency or similar is central to many other views
too: to neo-Fregeanism, to certain (“plenitudinous”) brands of platonism, to formal-
ism, and perhaps even to fictionalism.5 And if consistency is central to these views,
then it is reasonable to suppose that its epistemology is central to the epistemology of
mathematics more generally.

So much for motivation. The plan of the paper is as follows. Section 2 provides a
brief overview of Gentzen’s proof of the consistency of PA. Here my aim is not to pro-
vide the full technical details or a historically focused exposition of the proof.6 Rather,
I’ll give an overview of the structure of the proof (emphasizing the sense in which it
is a kind of cut-elimination theorem) and discuss the resources needed for its formal-
ization. The remaining sections address our main question: the epistemic status of
the proof. Section 3 considers the objection, evident in some of the early reactions to
Gentzen by his critics, that the proof exhibits a problematic kind of epistemic circularity.
I attempt to make this complaint more precise by reference to the recent epistemolog-
ical literature on transmission failure. After reconstructing the objection to the best of
my ability, I argue that it fails: Gentzen’s proof is not straightforwardly circular, for
reasons related to the formulation of mathematical induction required for the proof to
go through. But I do not think that the matter ends there. In Section 4 I take up the

3Shapiro [1997, 133]. Shapiro’s primary reason for not identifying coherence and consistency is that
consistency is at least partly a mathematical notion, which would lead to problematic circularity for his
purposes.

4Hellman [1989, Ch1].
5See for instance Hale and Wright [2001], Balaguer [1998], Weir [2010], and Field [1989].
6More detailed accounts of the proof can be found in standard texts on proof theory; see for instance

Takeuti [1987]. The original proofs can be found in Gentzen [1969]. For further information about the
historical and mathematical context of the proof, see the essays in Kahle and Rathjen [2015].
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distinct question of whether Gentzen’s result represents, as he himself believed, a “real
vindication” of the consistency of Peano Arithmetic. I approach that issue by consid-
ering a number of ‘foundational equivalence theses’ seeking to equate various formal
mathematical systems with intuitive conceptions of mathematical subject-matters. In
light of this discussion, I conclude that the truth lies somewhere in between the claims
of Gentzen and his critics: although the proof is epistemically non-trivial, it falls short
of constituting a real vindication of the consistency of arithmetic.

2. Gentzen’s Consistency Proof

2.1 Background

The story of the foundations of mathematics in the early 20th century has been fre-
quently told, so I will be brief in setting the scene. In the late 1920s and early 1930s,
metamathematics was preoccupied by Hilbert’s Program, which (motivated in part by
the discovery of Russell’s paradox for naive set theory and the desire to demonstrate
that mathematics could be adequately formalized) sought to place mathematics on a se-
cure footing.7 Hilbert’s Program had two main aspects: (i) a conviction in the absolute
epistemic security of finitary mathematics (a notion left unformalized by Hilbert and
his immediate followers, but which can be crudely characterized as reasoning which
presupposes no completed infinite totalities); and (ii) a view that infinitary mathematics
could be shown secure by providing consistency proofs using only finitary resources.
However, the program was fatally wounded by Gödel, who in effect showed that part
(ii) is impossible. For if infinitary mathematics is a proper extension of finitary mathe-
matics, and if finitary mathematics contains minimal arithmetical resources, then there
can be no finitary proof of the consistency of infinitary mathematics on pain of the
inconsistency of finitary mathematics.

Working in light of this background, Gentzen undertook the project of proving the
consistency of arithmetic in a way that was not ruled out by Gödel’s results. This
project came to fruition in 1936, when he published “The Consistency of Elementary
Number Theory”, the paper which arguably founded contemporary proof theory. Al-
though the main elements of the result were essentially already present in 1936, they
were refined and clarified by Gentzen in a number of subsequent papers.

In this section I will give a brief and schematic exposition of Gentzen’s proof. In
fact I’ll sketch it in two different ways: first a (somewhat anachronistic) version of
the proof due to Schütte, and then one closer to Gentzen’s own.8 The first version is

7For nice discussions of Hilbert’s Program, see Giaquinto [2002] and Zach [2007].
8Schütte’s proof can be found in Schütte [1977].
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included for mainly expositional reasons: it shows the sense in which the proof can be
seen as a cut-elimination result. The second version is valuable since it allows us to
see precisely what resources are required to formalize the proof. As we will see, the
details of the formalization matter a great deal when it comes to assessing the proof’s
epistemic worth.

2.2 Consistency as Cut-Elimination

In earlier work, Gentzen introduced the now-familiar deductive system of natural de-
duction. In the course of studying it, he formulated the sequent calculus, whose basic
notion is a sequent: a string of the form A1, ..., An ⇒ B1, ..., Bn, where the double-arrow
“⇒” is intended to formalize the notion of natural deduction derivability. Roughly
speaking a sequent expresses that the conjunction of the formulas in the antecedent
entails the disjunction of the formulas in the succedent. The sequent calculus has both
axioms and rules of inference. The axioms are “basic” sequents of the form A ⇒ A.
The rules of inference indicate ways in which one sequent can be validly obtained from
another, and are typically categorized in two ways: (i) rules governing the behaviour
of the connectives and (ii) structural rules. As an example of rules for connectives, here
are the (left and right) rules for negation:

[¬L]
Γ⇒ A, ∆

Γ,¬A⇒ ∆

[¬R]
Γ, A⇒ ∆

Γ⇒ ¬A, ∆

and as an example of a structural rule, here is weakening:

[Weakening L]
Γ⇒ ∆

Γ, A⇒ ∆

[Weakening R]
Γ⇒ ∆

Γ⇒ A, ∆

Of the structural rules, the most interesting is the cut rule. A here is the cut-formula,
so-called because it is “cut” from the derivation:

[Cut]
Γ⇒ A, ∆ A, Σ⇒ Π

Γ, Σ⇒ ∆, Π

Gentzen’s study of the sequent calculus culminated in his Hauptsatz or Cut Elimi-
nation Theorem: any sequent that admits of a derivation admits of a cut-free derivation,
i.e. one that does not use the cut rule. One of the interesting corollaries of this theorem
– the crucial fact that connects it with the question of consistency – is that sequent cal-
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culus deductions have the subformula property: whenever a sequent Γ⇒ ∆ is derivable,
it has a derivation all of whose formulae are subformulae of the formulae of Γ and ∆.
The consistency of the deductive system follows almost immediately: note that there is
a derivation of an inconsistency, i.e. ∅⇒ A ∧ ¬A, if and only if there is a derivation of
the empty sequent ∅⇒ ∅.9 So if the system is inconsistent, there must be a derivation
of the empty sequent featuring only its subformulas. But there are no such subformu-
las, and it is easy to demonstrate that the empty sequent could be derived only by an
application of cut.10 So the sequent calculus must be consistent.

So far all that has been shown is the consistency of the background logic: recall that
the axioms of the system under consideration are simply logical axioms of the form
A ⇒ A. One way to think about the Gentzen consistency proof for arithmetic is as a
cut-elimination result for a system expanded to include not just logical but also math-
ematical axioms. The mathematical theory in question is Peano Arithmetic (PA): the
familiar theory over the language LPA = (0, S,+, ·) with the usual axioms for succes-
sor, addition, and multiplication:

PA1 (Sx = Sy→ x = y)

PA2 ¬(Sx = 0)

PA3 x + 0 = x

PA4 x + Sy = S(x + y)

PA5 x× 0 = 0

PA6 x× Sy = (x× y) + x

PA7 [φ(0) ∧ ∀x(φ(x) → φ(Sx))] → ∀xφ(x) where φ(x) is a formula in the lan-
guage of arithmetic.

The connection with cut-elimination results is brought out most clearly in a version
of the proof given by Schütte.11 The consistency of PA is approached by considering an
alternative theory PAω which differs in two key respects. First, the axioms of PAω are:

PAω1 ∅⇒ A where A is a true atomic sentence

PAω2 B⇒ ∅ where B is a false atomic sentence
9Proof: from ∅ ⇒ A ∧ ¬A we can derive A ⇒ ∅ and ∅ ⇒ ¬A and and hence, by cut, the empty

sequent; conversely, any sequent can be obtained from the empty sequent by weakening.
10Each of the other rules either preserves or increases the number of formulas in the sequent.
11My exposition here is indebted to Rathjen [1999], which constains an extremely approachable intro-

duction to ordinal analysis.
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PAω3 F(s1, s2, ..., sn) ⇒ F(t1, t2, ..., tn) whenever si and ti are terms evaluating to
the same numeral.

Second, the rules of inference of PAω involve replacing the usual quantifier rules
with left and right versions of the ω-rule:

ωR
Γ⇒ ∆, F(0) Γ⇒ ∆, F(1) ... Γ⇒ ∆, F(n) ...

Γ⇒ ∆, ∀xF(x)

ωL
F(0), Γ⇒ ∆ F(1), Γ⇒ ∆ ... F(n), Γ⇒ ∆ ...

∃xF(x), Γ⇒ ∆

Notice that the ω-rule is infinitary, since there are infinitely many formulas above
the inference line. Thus, derivations within PAω can be thought of as infinite well-
founded trees, with their conclusion as a single root.

A branch is a maximal chain in the tree (/derivation); its length is the ordinal to
which it is isomorphic. The height of a tree is the supremum of the length of the
branches within it. Derivations give rise to well-founded trees, i.e. whose branches are
each of finite length. But since we are considering trees with infinitely many branches
(due to the addition of the ω-rule), it is possible for the height of a tree to be infinite.

•

• •

• • • . . .

•

A tree of height ω

The cut-rank of a derivation is the length of the longest cut-formula within it. Intro-
ducing some notation, say that PAω k

α Γ ⇒ ∆ if there is a derivation within PAω of the
sequent Γ ⇒ ∆ whose cut-rank is k and whose height is α. The first important fact to
note is that derivations in PA correspond to derivations in PAω in the following sense:

Fact 1. If PA ` Γ⇒ ∆, then PAω k
α Γ⇒ ∆ for some ordinal α < ω + ω and finite k.

The second fact is that the cut-rank of a derivation can be reduced, at a ‘cost’ of
increasing the height of the derivation by exponentiation by ω:

Fact 2. If PAω k+1
α Γ⇒ ∆ , then PAω k

ωα

Γ⇒ ∆.
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Thus, if PAω k
α Γ ⇒ ∆, then by appealing to Fact 2 k-many-times, we have that

there is a cut-free derivation of the same sequent with height ωω...α
, i.e. α exponentiated

by ω k-many times. This is the reason for the relevance of the ordinal ε0, defined as

ε0 = lim(ω, ωω, ωωω
, ...) = the least α such that ωα = α

For combining Facts 1 and 2, we have that

if PA ` ∅⇒ ∅, then PAω 0

β
∅⇒ ∅, for some β < ε0

In other words: if PA is inconsistent, then the empty sequent ∅⇒ ∅ can be derived
in PAω and, what is more, this derivation will be cut-free. But just as in the case for the
background logic, it is easy to see that PAω does not allow for a cut-free derivation of
the empty sequent.

2.3 Formalizing the Proof

I hope the foregoing gives a heuristic sense of how the proof runs. Now, the sketch just
provided was given in informal terms, without any explicit concern for the background
theory in which we were operating and whose principles we were presupposing. But
in order to make the proof rigorous and to evaluate its epistemic credentials, we need
to know in more detail which resources are required for its formalization. Here it is
helpful to return to a version of the proof closer to Gentzen’s own original presentation.
It proceeds via the following steps:

(I) Each derivation D of PA is assigned an ordinal Ord(D) < ε0.

(II) A reduction procedureR is introduced such that whenever D⊥ is a deriva-
tion of a contradiction, then so too is R(D⊥). Furthermore, for any deriva-
tion D⊥ of a contradiction, Ord(R(D⊥)) < Ord(D⊥). Note the strict in-
equality here.

Given (I) and (II), suppose that PA is inconsistent. Then there exists a derivation D⊥ of
a contradiction. The reduction procedure R can be applied to D⊥ to yield a derivation
R(D⊥) whose ordinal is strictly less than that of D⊥. Furthermore, this procedure can
be iterated, yielding an infinitely descending chain of ordinals:

ε0 > α0 = Ord(D⊥) > α1 = Ord(R(D⊥)) > α2 = Ord(R(R(D⊥))) > · · ·

Contrapositively, from the assumption that no such infinite descending chain of
ordinals below ε0 exists – the principle also known as transfinite induction up to ε0 –
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the consistency of PA follows.
Turn now to the question of how the foregoing reasoning might be formulated in a

suitable metatheory. There are a number of requirements:

1. A means of representing derivations in the sequent calculus in order to even talk
about them in the first place.

2. A means of representing the ordinals (below ε0) and the standard ordering rela-
tion < on them.

3. The definability of functions corresponding to the ordinal assignment function
Ord (which assigns ordinals to derivations) and the reduction procedureR.

4. The provability of the fact that, if D⊥ is a derivation of the empty sequent, then
Ord(R(D⊥)) < Ord(D⊥).

5. Transfinite induction12 up to ε0: the principle that

∀x, y < ε0[(x < y→ Px)→ Py]→ (∀y < ε0)Py

It turns out that conditions (1-4) are all satisfied in Primitive Recursive Arithmetic
(PRA), a relatively weak theory that captures reasoning about primitive recursive func-
tions.13 Since we will in due course take an interest in the epistemic status of this theory,
it is worth setting it out in full.

PRA is a quantifier-free theory with symbols for 0 and the successor relation, to-
gether with a function-symbol for each primitive recursive function.14 Its axioms are:

PRA1 Sx 6= 0

PRA2 Sx = Sy→ x = y

PRA3 for each primitive recursive function f , the recursion equations for f

PRA4 the induction rule (schema): from φ(0) and φ(x)→ φ(Sx) infer φ(x)

12The reason for calling this a form of induction is clear by comparing with an ordinal-theoretic formu-
lation of standard arithmetical induction: ∀x, y < ω[(x < y→ Px)→ Py]→ (∀y < ω)Py

13See for instance Troelstra and Schwichtenberg [2000].
14The class of primitive recursive functions is defined as follows. The basic primitive recursive functions

are: (i) the constant function 0; (ii) the successor function S; (iii) the projection functions Pi
n, which, when

applied to n arguments, returns the ith . In addition, the class is closed under two operations. First,
composition: if f and g are primitve recursive, then the composite function f ◦ g is primitive recursive.
Second, primitive recursion: if f and g are primitive recursive, and h is such that h(0, x̄) = f (x̄) and
h(Sy, x̄) = g(x̄, y, h(y, x̄)), then h is primitive recursive. If h can be written in this way, these two equations
are called its recursion equations.
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It is worth noting that since PRA lacks quantifiers, induction cannot be formulated
with a universal quantifier; this is why it appears in rule form. Despite its lack of
quantifiers, PRA is nevertheless able to simulate some simple universally quantified
claims by means of formulas with free variables. 15

Despite the relative weakness of PRA, it provides a natural setting for formalizing
Gentzen’s argument. For returning to our list of requirements above:

1. PRA names all natural numbers. Therefore it can represent formulas of the lan-
guage of arithmetic via a Gödel-numbering. Furthermore, arithmetical sequents
(and deductions) can also be represented by coding them up as various sequences
of formulas.

2. By judicious use of coding, PRA is also able to represent the ordinals below ε0.
One way to see this involves Cantor’s Normal Form theorem, which implies that
every ordinal α < ε0 can be written in the form α = ωα1 · k1 + ωα2 · k2 + ... +
ωαn · kn where α > α1 > α2 > · · · > αn and ki ∈ N. Since the ordinals αi can
themselves be written in Cantor Normal Form with exponents that are smaller
still, each ordinal α < ε0 can be represented uniqely by a term in the alphabet
ω, ·,+, 0, 1, 2, ... – and this representation can itself be encoded in the language of
arithmetic. In such a context, we operate not with ordinals directly but with their
codes. Furthermore the relation ≺, which holds between codes of ordinals just
when they themselves stand in the usual ordering relation <, is definable within
PRA.

3. An analysis of the ordinal-assignment function Ord and the reduction procedure
R shows that are both primitive recursive, and so are represented by functions in
PRA.

4. PRA proves the fact that Ord(R(D⊥)) ≺ Ord(D⊥) where D⊥ is a derivation of
the empty sequent.

5. Transfinite induction up to ε0 is not provable within PRA. (If it were, then PRA

would be able to prove the consistency of PA, and thus its own consistency, and
hence would be inconsistent.) But it can be expressed in rule form: from y ≺ x →
(φ(y)→ φ(x)) infer φ(x).

A further fact about the required formulation of transfinite induction is worth
emphasizing: because PRA is stated in a quantifier-free language with symbols
for primitive recursive functions, transfinite induction restricted to formulas of

15In particular those that are Π1, i.e. of the form ∀xφ(x) where φ contains only bounded quantifiers.
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that language is all that is needed for the proof to go through. The fact that in-
duction is restricted in this way will prove to be of significance when evaluating
the proof.

Summing it all up: writing TI(ε0) for transfinite induction up to ε0 restricted to
quantifier-free formulas, we have:

PRA+ TIQF
PR(ε0) ` Con(PA)

This concludes the overview of the proof. We turn now to its evaluation.

3. Circularity?

There is no question that Gentzen’s argument is valid, in that it meets the usual logical
and mathematical standards for an acceptable proof. Nor can it be doubted that it is of
great mathematical significance, constituting one of the founding results of proof the-
ory. It provides us with a means of validly deducing Con(PA), and thus – waiving any
doubts about our formalization of consistency claims – the consistency of PA itself. But
earlier we distinguished between a mathematical proof – of which Gentzen’s argument
is a paradigm case – and an epistemic proof – a procedure or demonstration capable
of cogently providing epistemic support for its conclusion. Our question is whether
Gentzen’s argument is a proof in this epistemic sense. In other words: does it provide
us with a means of obtaining justification in the consistency of PA?

Gentzen himself appeared to believe so. In the preamble to his paper he claims
to have proven the consistency of arithmetic “by means of forms of inference that are
completely unimpeachable”.16 Later, he writes that

I am inclined to believe that in terms of the fundamental distinction be-
tween disputable and indisputable methods of proof, the proof of the finite-
ness of the reduction procedure [i.e. the part of the proof involving transfi-
nite induction] can still be considered indisputable, so that the consistency
proof represents a real vindication of the disputable parts of elementary num-
ber theory.17

However, many have disagreed. The most usual grounds for doubt involve the
suspicion that, although the Gentzen proof is fully rigorous, it is nevertheless trivial or
problematically circular in a way that makes it epistemically impotent. Unfortunately,

16Gentzen [1969], p. 135. Italics added.
17Gentzen [1969], p. 197.
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in this domain, quips are more common than arguments. Hermann Weyl, for instance,
reportedly remarked that

Gentzen proved the consistency of arithmetic, i.e. induction up to the ordi-
nal ω, by means of induction up to ε0

18

– the joke here being that ε0 is an ordinal much larger than ω. Tarski is similarly
reported to have commented that knowledge of the Gentzen proof increased his con-
fidence in the consistency of arithmetic “by an epsilon” – the joke here being that “ep-
silon” is used both within the name of ε0 and also in analysis to denote an arbitrarily
small positive real number (as in the common first line of proofs “let ε > 0”).19 Kleene
prefers to reserve judgement, writing that:

to what extent the Gentzen proof can be accepted as securing classical num-
ber theory in the sense of that problem formulation is in the present state of
affairs a matter for individual judgement, depending on how ready one is
to accept induction up to ε0 as a finitary method.20

As I’ll argue (in §5), Kleene is close to the truth here, but the situation is slightly
more subtle than his remark suggests. In particular I’ll argue that the real question
is not whether transfinite induction up to is finitary, but whether it can be motivated
(in a sense which I’ll try to make more precise) in a way that’s independent of the
considerations motivating PA.

The aim of the rest of the paper is to get clear on the sorts of issues raised by these
commentators on Gentzen’s proof and to arrive at a stable evaluation of its epistemic
status. The remainder of this section considers the complaint that the proof is objection-
ably circular; I will argue that it is not. The first task, though, is to make the objection
more precise. To do that, we turn to the notion of transmission of warrant in the sense
much discussed within recent epistemology.

3.1 Transmission, Transmission Failure, and Circularity

What is the point of engaging in logical deduction? A natural answer is that it is a
way of improving one’s epistemic position: if the premises have a positive epistemic
status (I’ll focus here on justification, though I think nothing essential would be lost if
reformulated in terms of knowledge), then, via deduction, that positive status attaches

18Girard [2011], p. 9.
19Kahle [2015] cites Kreisel [1979] as reporting “familiar jokes (for example, by Tarski whose confidence

[in the consistency of arithmetic] was increased by ε”, or by Weyl who was astonished that one should use
“ε0 induction to prove the consistency of ordinary, that is ω-induction).” See also Kleene [1967], p. 257.

20Kleene [1952], p. 479.
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to the conclusion. But recent work in epistemology has made a convincing case that
not all deductions can work in this way. Here are three famous examples from the
literature:

• Dretske’s zebras. On the basis of a perceptual experience as of a zebra, we believe
P – that the animal in front of me is a zebra – and go on to deduce Q – that the
animal in front of me is not a cleverly disguised mule. 21

• Bootstrapping. On the basis of the gas gauge on my car reading ‘FULL’, we be-
lieve P – that my car’s gas tank is full – and go on to deduce Q – that the gas
gauge is working reliably on this occasion.22

• Moore’s ’proof’ of an external world. On the basis of a perceptual experience as
of a hand, we believe P – that there is a hand in front of me – and go on to deduce
Q – that the external world exists.23

The intuitive judgement in at least the first two cases is that there is something
epistemically problematic about deducing Q from P (at least when P is justified in the
manner described).24 But each deduction is valid (or can be made so with the addi-
tion of true and presumably justified enthymematic premises, e.g. that donkeys aren’t
mules). To get slightly clearer on the issue, distinguish arguments from deductions. An
argument consists of premises and a conclusion, which is (or is supposed to be) logi-
cally supported by the premises. A deduction occurs when an argument is put to use:
it is a particular, dateable mental event in which an agent infers the conclusion of an
argument on the basis of its premises in a logically competent way. Now let us say
that a deduction fails to transmit justification if the agent in question obtains no new
or enhanced justification in the conclusion as a result of carrying it out. The moral
suggested by the examples above is that, sometimes, perfectly valid deductions fail to
transmit justification.25

Can we say anything substantive about when exactly a deduction fails to trans-
mit justification? A natural first thought is that what is going wrong in the examples

21See Dretske [1970].
22See for instance Vogel [2000].
23Moore [1939].
24Moore’s ‘Proof’ is far more controversial than the other two. It is defended by a number of contem-

porary epistemologists, most prominently Pryor [2004]. Many however are sceptical of its efficacy; see for
instance Wright [2002].

25Transmission must be distinguished from closure. Roughly, closure principles claim that if the
premises of a competent deduction are justified, then so is the conclusion; transmission principles claim
that this justification arises as a result of the deduction. It should thus be clear that a denial that arguments
always transmit does not require a rejection of general closure principles. As far as I know, the distinction
between transmission and closure was first recognized in Wright [1986]. See also Zalabardo [2012] for an
externalist account of transmission failure.
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above is that they involve problematically circular inferences. Here is one way to flesh
that worry out. Sometimes, when we are justified in believing a claim, that justification
depends on other epistemically relevant facts. For example, take a simple case of per-
ceptual justification: I am justified in believing that I am sitting at a desk in front of a
laptop; that justification presumably depends, at least in part, on the visual experience
I am currently undergoing, as of being seated at a desk in front of a laptop. That is not
necessarily to make the psychological claim that my belief is inferentially based, i.e.
that I infer it from some other beliefs or mental states. But whatever the correct psycho-
logical description, there is overwhelming pressure at the level of epistemic analysis
to say that my justification that I’m sitting at a desk depends (at least in part) on the
perceptual experiences I’m having.

So we have a notion of epistemic dependence: a relation that holds between, on the
one hand, items of justification, and on the other, the sorts of things that can give rise to
this justification. Let’s leave it fairly loose what the relata of the second kind are: there’s
at least a prima facie case for thinking that justification might depend on, among other
things, having certain experiences, receiving certain testimony, carrying out certain (in-
ductive or deductive) reasoning, or being justified to believe certain other propositions.

All this suggests a hypothesis concerning transmission failure: that it arises when a
deduction involves a viciously circular pattern of epistemic dependence between its premises
and its conclusion. More precisely, in the form of a sufficient condition:

(Dependence Circularity) If S carries out a competent deduction from premises to
conclusion C, and S’s justification to believe one or more of the premises epistem-
ically depends on justification to believe C, then the deduction fails to transmit
justification to C.

Although the literature on transmission failure is large and disputatious, Depen-
dence Circularity seems to command widespread assent.2627 In what follows I’ll take it
as a working account of transmission failure; as we will see, it can be used to illuminate
a main source of worry about the epistemic status of Gentzen’s proof.

26Principles along these lines can be found in Wright [2002], Pryor [2012], and Neta [2013]. Although
the principle is widely accepted, its application to cases is more controversial. That said, it provides a way
of getting clear on (at least one aspect) of the recent dispute between those who endorse and those who
reject the transmissiveness of Moore’s “proof”. If Dependence Circularity is correct, then that question
reduces to whether or not perceptual justification about nearby hands depends on antecedent justification
to believe that there is an external world.

27Strictly speaking, Gentzen’s proof is an argument, not a deduction, so the question of whether it
transmits or fails to transmit justification is not well posed; it is plausible that whether or not transmission
occurs depends on the agent’s evidence for the premises and perhaps other background aspects of the
epistemic context in which the deduction is carried out. But our question is whether the proof can be
put to use by a typical (mathematically informed) subject in typical epistemic circumstances to obtain or
enhance their justification in the consistency of Peano Arithmetic; consequently no confusion is liable to
result from talking this way.
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3.2 Transmission Failure and the Gentzen Proof

The most explicit articulation of a circularity objection of which I’m aware can be found
in a discussion by Crispin Wright:

To accept the Gentzen proof is to be persuaded of a mapping between the
proofs constructible in elementary number theory and the series of ordinals
up to ε0. And to understand the structure of the ordinals up to ε0 is to
grasp a concept which embeds and builds on an ordinary understanding of
the series of natural numbers. So to trust the Gentzen proof is implicitly to
forgo any doubt about the coherence of the concept of natural number.28

In light of the discussion of epistemic dependence and transmission failure, I sug-
gest that this argument can be rendered as follows:

CA1 Justification in the premises used in the Gentzen proof depends on an un-
derstanding of the ordinals up to ε0;

CA2 An understanding of the ordinals up to ε0 depends on an understanding of
the ordinals up to ω, i.e. the natural numbers;

CA3 An understanding of the natural numbers depends on justification in the
consistency of PA;

CA4 Therefore, the Gentzen proof fails to transmit justification to the consistency
of PA.29

Call this the Circularity Argument. Granted the transitivity of epistemic depen-
dence and Dependence Circularity, the Circularity Argument is valid. In the remainder
of this section, however, I will argue that it is unsound. Before I give my main reasons,
a brief concern regarding CA3 should be mentioned. This claim plays a crucial role in
the argument; for in order to apply Dependence Circularity to the Gentzen proof, the
justification of least one of the premises must depend on justification for the conclusion,
i.e. the consistency of PA. But CA3 is undermotivated. In fact it’s open to substantial
challenge: for all that has been said so far, the direction of dependence might be re-
versed; perhaps our justification in the consistency of PA depends, conversely, on our
understanding of the natural numbers.

Nevertheless, even if this objection is waived, there is a more fundamental reason
why the argument fails. The problem is that talk of “an understanding of the ordinals

28Wright [1994], p. 177.
29Again, read ‘the Gentzen proof’ as ‘any deduction following the structure of the Gentzen proof’.
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up to...” contains a crucial equivocation. It is true that the metatheory in which the
Gentzen proof is carried out, PRA+ TIQF

PR(ε0), does, in a sense, require an understand-
ing of the ordinals up to ε0, since one of its axioms is transfinite induction up to ε0, and
presumably such an axiom could be justified only via an appropriate understanding
of the relevant ordinals. And it is true that an understanding of the ordinals up to ε0

does, in a sense, require (and build on) an understanding of the natural numbers; after
all, the natural numbers are the ordinals up to ω, and ε0 is indeed an ordinal which
extends ω. But there is a major difference in how these two theories – PRA+ TIQF

PR(ε0)

on the one hand and PA on the other – handle induction; a difference which allows
us to see that although CA1, CA2, and CA3 have true readings, there is no reading of
capable of making them true simultaneously.

Recall that the role of transfinite induction up to ε0 in the Gentzen proof is to
rule out the existence of an infinitely descending chain ε0 > α0 = Ord(D) > α1 =

Ord(R(D)) > α2 = Ord(R(R(D))) > · · · of the kind that would be generated by
a derivation of an inconsistency. But as was emphasized in §2.4, transfinite induction
is required in only a very limited form. Our analysis of the proof showed that any
derivation of an inconsistency within PA would be witnessed by an infinitely descend-
ing chain of ordinals expressible by quantifier-free formulas in the language of PRA. So,
although the proof requires transfinite induction up to ε0, it is really only a highly re-
stricted version of transfinite induction that is needed.

To see the full implications of this point, it helps to think of the inductive com-
mitments of arithmetical theories as varying along two different dimensions. The first
dimension, which we might call the width of induction, is the range of conditions or
properties over which induction can be carried out. Here is how things play out for
some relevant theories:

PA is a first order theory containing an induction schema whose instances include
all formulas in the language of arithmetic (i.e. in terms of zero, successor, addi-
tion, and multiplication). Its inductive commitments can thus be characterized
as ranging over all and only arithmetical conditions, i.e. those expressed by a
formula which is Π0

n or Σ0
n for some n.30

Second order arithmetic Z2 is obtained by replacing PA’s induction schema with a
second order induction axiom, quantifying into predicate position. The inductive
commitments of Z2 thus outstrip those of PA, since it is capable of formulating
additional conditions via second order quantification. In these terms Z2 allows
induction over all and only analytic conditions, i.e. those which can be defined

30See e.g. Rogers [1987].
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by a formula which is Π1
n or Σ1

n for some n.31

Primitive recursive arithmetic PRA allows induction in rule form, over a quantifier-
free language with symbols for primitive recursive functions. Using free vari-
ables to simulate universal quantification, PRA in effect allows induction over
the Π0

1 conditions involving primitive recursive functions, a proper subset of the
arithmetical conditions over which induction can be carried out in PA. There is
thus a clear sense in which the inductive commitments of PRA are less extensive
or ‘narrower’ than those of PA.

PRA+ TIQF
PR(ε0) allows induction over the same conditions as PRA and thus has

the same commitments regarding the width of induction.

The second dimension is the height of induction: how far into the ordinals can in-
duction be carried out? One way to measure this is by the proof-theoretic ordinal of
a theory: roughly the smallest ordinal whose well-ordering cannot be proven by the
theory. 3234Returning to the theories we have been considering:

Gentzen’s result implies that PA cannot prove the well-ordering of ε0 (on pain
of being able to prove its own consistency). As Gentzen himself also showed,
this result is best-possible, since the well-ordering of every ordinal below ε0 is
provable within PA.

The proof-theoretic ordinal of Z2 is not currently known, although it is known to
be far larger than ε0.35

31There are many philosophical questions concerning the ontological and mathematical status of second
(and higher) order quantification, but these do not need to be addressed here. (See for instance Shapiro
[1991]. My point is simply that on certain – perfectly respectable – views of second order quantification,
there are considerable differences in the inductive commitments of PA versus Z2.

32Only ‘roughly’, because the present formulation elides difficult issues concerning ordinal notations.
In the context of arithmetical theories, we deal not with ordinals directly, but with their codings or repre-
sentatives in some ordinal notation system. But, as usual when codings are involved, pathological cases
arise. Rathjen discusses the example (due to Kreisel) of a notation system of order type ω which is not
provably well-ordered in PA because it in effect uses coding tricks to build in information about the con-
sistency of PA. The usual response is to restrict attention to ‘natural’ ordinal notations. Rathjen expresses
what I take to be the consensus view, that this notion cannot be mathematically precisely defined and
is inherently informal, when he claims that “it is futile to look for a formal definition of ‘natural well-
ordering’ that will exclude every pathological example”.33 While this means that the notion of “proof
theoretic ordinal” is correspondingly informal, in practice, problems do not arise, since there appears to
be considerable agreement among proof theorists about which ordinal notation systems count as natural.

34The relation between transfinite induction and well-ordering is this: T proves that λ is well-ordered
(under a given ordinal notation ≺) if and only if T validates the inference rule: from ∀x, y ≺ λ((x ≺ y →
φ(x))→ φ(y)) infer ∀x ≺ λφ(x).

35The ordinal analysis of significant fragments of Z2, in particular Π1
0−CA and closely related systems,

has been carried out by Rathjen and Arai. See for instance Rathjen [1995].
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PRA proves the well-ordering of ordinals up to, but not including, ωω. Since
ωω < ε0 there is thus a clear sense in which PRA is committed to less extensive
induction than PA.

PRA+TIQF
PR(ε0) clearly proves the well-ordering of ε0 itself; thus its commitments

regarding the height of induction go beyond those of PA.

Summarizing the above discussion:

Theory Mode of induction ‘Width’ ‘Height’
PA axiom schema arithmetical ε0

Z2 second-order analytical unknown (� ε0)

PRA rule form q.f. over LPRA ωω

PRA+ TIQF
PR(ε0) rule form q.f. over LPRA ε0 + 1

The distinction between width and height allows us to see what exactly is wrong
with the Circularity Argument. The Gentzen proof illustrates a trade-off between the
two dimensions of inductive commitment: it shows us how the consistency of PA can
be derived in a theory PRA+ TIQF

PR(ε0) which entails the well-ordering of ε0 and thus
takes on additional commitments (relative to PA) concerning the height of induction, but
which allows induction only over quantifier-free formulas involving primitive recur-
sive functions and thus takes on fewer commitments (again, relative to PA) concerning
the width of induction. The fundamental problem is thus equivocation in the ‘un-
derstanding’ mentioned in premises CA1, CA2, and CA3. For although it’s true that
justification in PRA+ TIQF

PR(ε0) requires an understanding of the ordinals up to ε0, our
discussion of induction shows that the required understanding is in a perfectly precise
sense weaker or less committal than an understanding of the natural numbers suffi-
cient to motivate PA.

4. Triviality?

I’ve so far argued that the most promising argument for the circularity of the Gentzen
proof fails. In this section, I’ll outline a different way in which a consistency proof can
be trivial and argue that the Genzten proof is not trivial in that sense.

Consider the “epistemic space” of views or doxastic attitudes that one might co-
herently adopt concerning mathematical theories, including claims about their consis-
tency / inconsistency. Let the attitudes here include not only states of belief / disbelief
/ agnosticism but also gradable attitudes such as credences or degrees of belief. For
instance, my own attitudes include the following:
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all-or-nothing doxastic states concerning the consistency of various theories –
e.g. belief that PA is consistent; agnosticism whether ZFC + ”there exist infinitely
many Woodin cardinals” is consistent;

graded or credal states – e.g. high credence that PA is consistent;

conditional beliefs/credences – e.g. belief/high credence that, conditional on the
inconsistency of PA, the proof of an inconsistency will essentially involve an in-
stance of induction;

comparitive credences – e.g. a higher credence that, conditional on the inconsis-
tency of PA, the proof of an inconsistency essentially involves induction than it
does the axioms for addition.

“Coherent” needs to be understood in a relatively permissive way. Say that a posi-
tion is coherent (relative to a background body of mathematical knowledge) if it could
be held by a rational, reflective, mathematically sophisticated and well-informed agent
(in possession of the background knowledge). In particular, I do not assume that coher-
ence requires logical omniscience or anything analogous. In the sense intended, it can
be perfectly coherent to fail to believe something that is entailed by one’s other beliefs
or even to have inconsistent beliefs (as long as the inconsistency is not of the kind that
would be easily discovered by a mathematically sophisticated etc agent). I stress this
point because it is crucial if we wish to allow the possibility that someone might coher-
ently yet falsely believe in a theory’s consistency. If T is inconsistent, then that fact will
be derivable in a weak theory of syntax.36 But we do not want to say that someone who
accepts a weak syntax theory cannot coherently have false beliefs about the consistency
of theories; this would not only be implausible, but would also trivialize the present
investigation.37

Some examples may help to illustrate. Consider first the position of Edward Nel-
son, who believes (and has expended considerable effort attempting to prove) that
weak arithmetical theories, even those as weak as PRA, are inconsistent.38 Nelson’s
views may well be wrong – I believe and hope that they are – but his view nevertheless
is clearly coherent relative to our current state of knowledge. In particular, it would be

36Any theory of syntax extending Q will suffice: Q can define the canonical provability predicate
for any recursively axiomatized theory, and it is Σ1 complete, so if T is inconsistent we will have
Q ` ∃xProofT(x,⊥).

37This is the reason why I do not appeal to the usual frameworks of contemporary formal epistemol-
ogy (e.g. epistemic logic and probabilism) in fleshing out the notion of epistemic space, since the most
prominent formulations build in logical omniscience or equivalent.

38See for instance Nelson’s discussion at https://mathoverflow.net/questions/142669/illustrating-
edward-nelsons-worldview-with-nonstandard-models-of-arithmetic. Nelson circulated a claimed proof
of an inconsistency in PA in 2015, but later withdrew it after an error was discovered by Terence Tao.
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absurd to accuse him of being irrational, unreflective, mathematically unsophisticated,
or poorly informed on the issue

On the other end of the spectrum, consider the kind of position held by many con-
temporary set theorists engaged in the search for new axioms, according to which the
consistency of ZFC is virtually beyond question and the only real issue is how far into
the hierarchy of large cardinal principles we are entitled to go. Hugh Woodin, for
instance, has expressed high confidence in the consistency of ZFC plus ’there exists in-
finitely many Woodin cardinals’.39 John Steel has done the same for ZFC plus various
rank-to-rank embedding principles.40 Perhaps these views are wrong and the relevant
theories are inconsistent. But given that the mathematical community is presently in
possession of no proof to that effect, it seems to me that, even if one disagrees with
these positions, one must accept that they are coherent in the relevant sense.

This conception of epistemic space allows us to define a way in which a consistency
proof might be diagnosed as ‘trivial’. The basic idea is that a proof is substantive –
non-trivial – if it rules out some coherent position in epistemic space. More fully: start
by considering which positions are coherent relative to bodies of knowledge that do
not include the proof; then consider the positions which are coherent once knowledge
of the proof is added; finally, observe whether any formerly coherent positions are no
longer coherent relative to the updated body of knowledge. The thought is then that a
proof is trivial if it rules out no coherent positions in this way.

The Gentzen proof is not trivial in this sense. The reason is simply that, given the
state of mathematical knowledge before the Gentzen proof was known, the following
views were each coherent: (i) to believe that PA is inconsistent, but that PRA+TIQF

PR(ε0)

is not; (ii) to believe that induction over all arithmetical conditions is ‘riskier’ (i.e. more
likely to be inconsistent) than transfinite induction up to ε0 over only primitive re-
cursive conditions; or (iii) to have a higher credence that, conditional on PA being in-
consistent, the inconsistency relies essentially on carrying out induction over complex
quantified sentences involving non-primitive-recursive functions. But although these
positions were each coherent before the proof was discovered, none can rationally be
maintained once it is known.41 There is a therefore a strong case to be made that the

39See for instance Woodin [2011], where Woodin predicts that “there will be no discovery ever of an
inconsistency in these theories [i.e. ZFC plus ’there exists infinitely many Woodin cardinals’ and others].”

40See Steel [2014], p. 156. Steel is more confident still in the consistency of axioms for which an inner
model theory can be constructed: roughly as high as (but not including) the existence of a Woodin limit
of Woodin cardinals.

41It is interesting to assess the so-called ‘semantic argument’ for the consistency of a theory T in these
terms. The argument runs roughly as follows: the axioms of T are true, the inference rules of logic preserve
truth, hence all of the theorems of T are true; but if T were inconsistent, it would have false theorems; so it
is consistent. The semantic argument cannot be formalized in T itself but can be in a theory T+ which adds
certain compositional truth axioms to T. Very plausibly, the semantic argument is diagnosed as trivial by
the criterion above: for if there is some coherent position that is ruled out by the argument, it must be one
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Gentzen proof is not trivial in the sense under discussion.

5. Real Vindication?

If what I’ve said so far is right, the circularity argument against the Gentzen proof’s
ability to transmit justification is flawed and the proof is non-trivial in the sense that it
rules out certain antecedently coherent positions about how an inconsistency in arith-
metic might arise. But there is an important question remaning. Our notion of a co-
herent position in epistemic space was a fairly permissive one: a position that someone
could hold, given a body of mathematical knowledge, without thereby being guilty
of irrationality. But simply because a position is coherent in these terms does not
mean that it is positively justified or well-motivated in a more demanding sense. It’s
plausibly true that before the Gentzen proof, someone could have coherently accepted
PRA+ TIQF

PR(ε0) while failing to accept Con(PA). But is there any positive justification
for inhabiting such a position?

A full answer to this question would require a comprehensive theory of positive
mathematical justification – well beyond the scope of this paper. Instead, I’ll offer a
brief sketch of a view – perhaps even the orthodox view – which, I believe, will allow
progress to be made. I suggest that we consider the most prominant examples of what
might be called foundational stances: informal conceptions of various domains of math-
ematical objects (e.g. the natural numbers, syntactic objects, the universe of sets) or
modes of reasoning (e.g. constructive or finitistic proof), corresponding to a principled
position or foundational program in the philosophy of mathematics.42 The proposal is
that these stances are, in the first instance, the primary sources of positive mathematical
justification.

Foundational stances as just described do not immediately give rise to positively
well-motivated positions in epistemic space, for foundational stances are informal and
positions in epistemic space as we are understanding them concern attitudes towards
formal mathematical theories. To bridge this gap, we need what I’ll call foundational
equivalence theses: claims to the effect that a foundational stance is extensionally equiv-
alent to a formal mathematical theory.43 A theory which does not enjoy the privilege

that endorses T+. But if so, it presumably also endorses ConT+. However, since T is a subtheory of T+,
ConT+ implies ConT (and indeed this will be known by a reflective agent). So, any position in epistemic
space which endorses the premises of the semantic proof must, plausibly, rationally already endorse its
conclusion. If so, the proof fails to rule out any coherent position.

42See for instance the essays in Benacerraf and Putnam [1964] Part I. Further examples of foundational
stances, helping to clarify the notion, will be given shortly below.

43Foundational equivalence theses are examples of the larger class of what might be called informal
equivalence theses, such as the Church-Turing thesis – characteristic examples of the method of ‘informal
rigour’ discussed in Kreisel [1967].
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of being on the right hand side of a foundational equivalence thesis is thus, in a nice
phrase of Walter Dean’s, epistemically unstable: there is no positive rationale for ac-
cepting that theory and only that theory; either it has no motivation at all, or it is mo-
tivated only derivatively, via its relation to a more powerful system whose axioms are
themselves well-motivated.44

Our question then becomes: is there some foundational stance that motivates PRA+

TIQF
PR(ε0) but does not immediately motivate ConPA? The question can be sharpened

further still. Granted the additional epistemic premise that someone who endorses T

is rationally committed to its consistency claim ConT, what we need to find is some
stance that motivates PRA+ TIQF

PR(ε0) but does not motivate PA itself.45

My suspicion, which I will defend in the remainder of this section, is that this cannot
be done.

Before I defend that claim, however, let me say something briefly about how the
present attempt to evaluate Gentzen’s proof differs from other approaches in the lit-
erature. Consider first Kleene’s judgement that the status of Gentzen’s proof depends
on “how ready one is to accept induction up to ε0 as a finitary method.” While that
issue is clearly relevant to our question, it cannot be the whole story. For unless we go
along with Hilbertian views about the absolute epistemic security of finitary methods,
there is no particular reason why they should have a privileged place in our inquiry:
perhaps TIQF

PR(ε0) can be informatively justified by some foundational stance other than
finitism. Second, while commentators are often sensitive to the possibility that a foun-
dational stance (usually, like Kleene, focusing on the example of finitism) undershoots
relative to the proof in that it fails to motivate the required resources, I do not think the
possibility and the significance of overshooting has been appreciated to the same de-
gree. But suppose that the only well-motivated positions able to carry out the Gentzen
proof are those that can already be shown to motivate PA (or ConPA) in a much more
direct way. In that case it is hard to see how the proof can constitute a ‘real vindica-
tion’ of its conclusion, to use Gentzen’s nice term: for anyone who justifiably accepted
its premises, prior to the proof being known, was already in a position – via a much
simpler set of reflections – to justifiably accept its conclusion.

Let us turn to the question of how PA might be motivated. The thesis that bears
most directly on the question is:

44Dean [2015], p. 53.
45This additional premise is widely accepted, sometimes as a consequence of the stronger thesis that

anyone who accepts a theory is rationally committed not only to the consistency of T but also to its
soundness, expressed via a reflection principle. Halbach [2017], p. 308, for instance, claims that “accepting
a theory without believing in its consistency strikes many logicians at least as odd if not incoherent. If one
endorses a theory, so one might argue, one should also take it to be sound”. For an opposing view, see
Dean [2015].
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Isaacson’s thesis. According to Isaacson, there is a class of “purely arithmeti-
cal” truths: those that are justified on the basis of our intuitive conception
of the natural numbers as the structure containing an initial element (0) and
closed under a successor relation, but which do not rely on “higher order”
or “set-theoretic” considerations.46 Isaacson’s thesis is that the purely arith-
metical truths are captured precisely by Peano Arithmetic, in the sense that
all and only the theorems of PA are purely arithmetical in this sense.

However, there is a subtlety. Isaacson is explicit that the purely arithmetical truths
form a proper subset of those that are justified by a more fundamental, and more ex-
pansive, conception of the natural numbers. As he puts it, “I am not claiming that PA
could itself constitute an adequate conceptual basis for our understanding of the con-
cept of natural number. Far from it, I consider that we can only arrive at such a system
on the basis of some higher-order understanding.47” That more expansive understand-
ing is given by what we might call:

Dedekind’s thesis. The conception of the natural numbers as the smallest
structure containing an initial element (0) and closed under a successor re-
lation is captured precisely by the formal system of second-order arithmetic
Z2.

Even if Isaacson’s thesis does not give rise to an autonomous motivation for PA, it
is clear that, if Dedekind’s thesis is correct, PA can be motivated derivatively via Z2.
It is worth saying a little more about motivating a theory by ‘reducing’ it to a more
expansive well-motivated theory. In the most straightforward case, when the theories
are formulated in the same language, it suffices for every axiom of the ‘smaller’ theory
to be derivable in the ‘larger’ theory. But sometimes theories are not stated in the same
language, and here a number of formal reducibility relations have been proposed. The
most prominent are interpretability – roughly, a systematic mapping from the theorems
of the ‘larger’ theory to the axioms of the ‘smaller’ theory in such a way that logical
structure is preserved – and proof-theoretic reduction – roughly, when there is an effective
procedure for transforming a proof of φ in the ‘smaller’ theory to a proof of φ in the
‘larger’ theory, and the ‘larger’ theory is able to recognize this fact.48 Plausibly, if a
‘smaller’ theory can be formally reduced to a ‘larger’ theory in any of these ways, an
epistemic reduction is thereby effected in the sense it provides a means for someone who
justifiably accepts the larger theory to justifiably accept the smaller.

46Isaacson [1987].
47Isaacson [1987], p. 209.
48Burgess [2005], p. 38, notes that “Philosophically, interpretation is a way of legitimizing a theory that

is not legitimate when taken literally.” For more on proof-theoretic reducibility, see e.g. Feferman [1993]
and Feferman [2000].
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So there are at least a couple of potential routes for motivating PA. It is far less clear,
however, what can be said about PRA+ TIQF

PR(ε0). My conclusions here are tentative
but pessimistic: I do not think there is any stance that motivates PRA+TIQF

PR(ε0) but not
PA. I have no knock-down argument for this claim, and I do not know how one could
be constructed. Rather, I’ll proceed in the only way I can see: by briefly examining
the three most promising candidates and arguing that they either under- or overshoot
the target, in the sense that each either fails to motivate PRA+ TIQF

PR(ε0) or proceeds to
motivate PA. The three stances we’ll consider are (i) finitism, (ii) constructivism, and
(iii) predicativism. Let us take each in turn.

5.1 Finitism

Finitism, in the sense of Hilbert and Bernays, can be roughly described as a conception
or mode of mathematical reasoning about the natural numbers that does not presup-
pose that they constitute a completed infinite totality.49

How much mathematics can be carried out on this basis? A widely accepted foun-
dational equivalence thesis concerning finitism is:

Tait’s thesis. Finitism is captured by the formal system of Primitive Recur-
sive Arithmetic (PRA) in the sense that any proof within PRA is finitisti-
cally acceptable, and conversely any finitistically acceptable proof can be
converted to a proof in PRA with the same conclusion.50 It bears empha-
sis that (as with many foundational equivalence theses) this is an external
characterization of the position: Tait does not claim that the finitist ought
to endorse PRA itself, since, after all, it is a theory that involves reference
to (infinitely many) total functions on the natural numbers – objects which
plausibly presuppose the notion of a completed infinite totality of numbers
and thus cannot be recognized by the finitist as such. Rather, as with many
foundational equivalence theses, Tait’s thesis characterizes finitism exter-
nally.51

49For more on philosophical aspects of finitism, see Tait [1981] and Incurvati [2015]. As with other ma-
jor foundational programs, finitism admits several apparently distinct characterizations. One is historical
– roughly, as whatever Hilbert and Bernays (the pre-eminent historical figures associated with the posi-
tion) meant by it. There are very interesting questions concerning whether, on this historical conception,
Gentzen’s proof is finitistically acceptable. See e.g. Zach [2003] for more. Another characterization is
explicitly epistemic – roughly, the part of mathematics that enjoys a certain kind of intuitive evidence or
epistemic security. However the conceptual characterization given above seems more fundamental: pre-
sumably, if finitism is epistemically distinguished, that ought to be explained in terms of the nature of the
domain or reasoning it encompasses.

50Tait [1981]. See also Dean [2015], p. 50-52.
51Tait also defends an analogous thesis for functions: that any finistically acceptable function is primi-

tive recursive, and conversely any primitive recursive function is finistically acceptable.
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Clearly, if Tait’s thesis is correct, it rules out finitism as a suitable motivation for
Gentzen’s proof: for assuming PRA is consistent, TIQF

PR(ε0) cannot be proven in PRA

and therefore cannot be justified on finitist grounds.
Although Tait’s thesis is the orthodox view concerning the limits of finitism, it is

worth briefly considering a more expansive conception, due to Kreisel, who famously
argued that “finitist results include essentially those of classical number theory”.52

More precisely, Kreisel argues that finitism corresponds to a certain quantifier-free sys-
tem capable of proving analogues of the Π2 statements as PA.53His argument begins
with the idea that PRA is finitistically acceptable and appeals to the finitistic accept-
ability of an autonomous progression of theories extending it: in effect, the thought is
that, given a formalization of a notion of finitist proof, it can be expanded to a more in-
clusive notion of finitist proof by adding reflection principles expressing its soundness;
furthermore, this process can be carried out along limit ordinals provided that there is a
finitist proof of their well-ordering.

The crux of Kreisel’s disagreement with Tait thus appears to be whether finitists can
accept the general notion of a total function on the natural numbers: this is implicit in
the move from the claim – which Tait accepts – that the finitist can accept any partic-
ular primitive recursive function – to the claim – which Tait denies – that the finitist
can accept a general principle to the effect that functions can be constructed via primi-
tive recursion. Nevertheless, even if Kreisel’s more expansive conception of finitism is
correct, it does not provide a vindication of Gentzen’s result: in particular, it does not
yield any principles of transfinite induction beyond those available in PA. It appears,
consequently, that no plausible understanding of finitism is capable of motivating the
resources to carry out Gentzen’s proof.

5.2 Predicativism

Predicativism is a conception of the natural numbers and sets thereof motivated by the
vicious circle principle in the sense of Poincaré and Russell, according to which a set of
natural numbers is acceptable insofar as they can be defined without quantifying over
totalities to which they belong.54

The most prominent foundational equivalence thesis concerning predicativism is
the:

Feferman-Schütte thesis. Predicativism is captured precisely by the formal

52Kreisel [1958], p. 290.
53See also Kreisel [1970] and Dean [2015], p. 45-7 for discussion.
54Again, predicativism has a rich and storied history; for more, see Feferman [2005], Hellman [2004],

and Feferman [2004].
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system RA<Γ0 of ramified analysis up to the Feferman-Schütte ordinal Γ0.55

Unfortunately, for our purposes, RA<Γ0 overshoots, for it is a theory extending PA.
Feferman is explicit that predicativism in the sense his thesis is intended to characterize
is predicativism given the natural numbers – the conception of natural numbers given by
PA. This is clear from the procedure used to arrive at RA<Γ0 . Informally, we start with
PA, and allow sets that are definable by a formula of PA. Then we proceed in stages,
adding sets that are definable at the previous stage (or at limits, some previous stage);
and iterate this procedure into the transfinite for ‘predicatively acceptable’ ordinals, i.e.
those expressed by ordinal notations provably well-ordered at some previous stage.

However, it is not at all clear that predicativism must take a conception of the natu-
ral numbers as codified by PA as basic; in principle there is no reason why predicativism
might not be developed from other starting points. To my knowledge, there are two
main proposals in the literature for extracting the predicativist commitments from a
given theory. Neither, I believe, provides room for optimism.

The first involves autonomous progressions.56 However, it is difficult to see how au-
tonomous progressions starting from a well-motivated arithmetical theory weaker than
PA could yield the relevant transfinite induction principle. A finitist starting point
certainly does not appear promising; the results of Kreisel discussed above show that
extending finitist arithmetic with reflection principles up to autonomous ordinals will
not suffice.57 Perhaps an autonomous progression based on some other well-motivated
arithmetical theory would suffice to motivate Gentzen’s proof, but I do not know of
any, and none to my knowledge has been proposed in the literature.

The second approach is also found in the work of Feferman.58 Starting with a
schematically axiomatized theory S, one extends it to obtain its ‘unfolding’ U (S). The
details of the unfolding construction are technically complex, but they can be viewed
as extending S by adding new predicates and operations obtained from those of S by
a kind of generalized recursion. According to Feferman, unfolding is philosophically
significant as a means of characterizing the implicit predicativist commitments of ac-
ceptance of a starting theory; indeed, one source of support for this claim is the fact
that U (PA) ≡ RA<Γ0 , so that the unfolding of Peano arithmetic is (proof-theoretically

55See Feferman [1964] and Schutte [1965].
56In addition to Kreisel [1958], see Feferman [1962].
57Two kinds of autonomous progressions have been discussed above: one involving reflection exten-

sions, the other involving ramified theories of sets. Kreisel’s results concern the former with PRA (a finitist
theory, assuming Tait’s thesis) as a starting point; I do not know of any results concerning the autonomous
ramified progression arising from PRA. Possibly this is because PRA is not a natural theory to consider
in this context, for it is quantifier-free and thus it is not entirely clear how it could be ‘extended’ to a
second-order theory in the way required to get ramification off the ground. Perhaps the most natural ap-
proach would be to consider the theory QF− IA, the conservative extension of PRA which adds standard
first-order quantification and allows induction for quantifier-free sentences.

58See for instance Feferman et al. [1996], Feferman and Strahm [2000], and Feferman and Strahm [2010].
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equivalent to) precisely the theory that arose from PA via autonomous progressions.
Again, for our purposes, the interesting question is the strength of the unfolding of
theories of arithmetic weaker than PA. Here the main result of significance is due to
Feferman and Strahm, and applies to a theory they call FA for Finitist Arithmetic, so-
called because it bears a close relation to PRA.59 Their result is that U (FA) is proof
theoretically equivalent to PRA itself. Granted the assumptions (a) that FA is a reason-
able expression of finitist arithmetical commitments and (b) that unfolding represents
the predicativistic commitments implicit in the acceptance of a theory, this result can be
interpreted as saying that predicativism given a finitist conception of the natural numbers
motivates a theory proof-theoretically equivalent to PRA. But if so, it undershoots in
our sense, and thus the most natural ways of developing predicativism do not yield a
theory that motivates TIQF

PR(ε0) without motivating PA.

5.3 Constructivism

The last foundational stance we’ll consider is constructivism: very roughly a view that
requires, for any object claimed to exist, an explicit construction procedure to be pro-
vided.60 It is sometimes claimed, for instance in Feferman [2000], that transfinite induc-
tion of the kind needed for Gentzen’s proof may be justified on constructive grounds.
Again, though, it should be emphasized that this is not exactly our question: ours is
not merely whether TIQF

PR(ε0) can be constructively justified but rather whether it can
be done so in a way that does not itself justify PA. Perhaps even more than the other
stances we’ve considered, constructivism is a broad church, encompassing a variety
of philosophical motivations, and as before, we cannot hope to exhaustively consider
all its possible forms here. Instead let us focus upon the main theories that might be
motivated on a constructivist basis.

A natural first thought is to wonder if constructivist approaches to arithmetic might
fit the bill. The main equivalence thesis in the vicinity is what we might call:

Heyting’s thesis. Constructive arithmetic is precisely captured by the system
of Heyting Arithmetic HA, i.e. the theory with the same axioms as PA but
which uses an intuitionistic background logic.61

If Heyting’s thesis is correct, however, then constructivist arithmetic will not suffice.
The reason is due to the Gödel-Gentzen double-negation translation: if φ is a theorem
of PA, then φN is a theorem of HA, where N is the translation prefixing every atomic

59Feferman and Strahm [2010].
60See e.g. Troelstra and Van Dalen [2014].
61Heyting [1930].
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claim, disjunction, and existential claim with ¬¬. Constructivist arithmetic thus un-
dershoots, since its proof theoretic ordinal can be seen to be the same as that of PA. It
also arguably overshoots, since, as Rumfitt claims, a plausible reading of the transla-
tion theorem is that it “shows how someone who accepts Heyting Arithmetic might be
rationally persuaded to accept the classical Peano Arithmetic”.62 If so, then the transla-
tion provides a reduction of PA to HA in the epistemic sence, of providing a means for
someone who justifiably accepts the latter to justifiably accept the former.

What about constructivist theories going beyond arithmetic? Constructive analy-
sis comes in several varieties (for some, see Troelstra and Van Dalen [2014]), reflecting
differing philosophical treatments of the construction of the real numbers. There are
relatively few foundational equivalence theses connecting these views with particular
formal systems – when a formal treatment of constructive analysis is needed, it usu-
ally takes place within a more powerful constructivist system (to be discussed shortly
below). It is plausible, however, that any formal system justified on the basis of con-
structivist approaches to analysis will undershoot: Simpson [1999], p. 43, for instance
claims that analysis in the mode of Errett Bishop (one of the most liberal constructivist
treatments of the subject) is captured by the weak fragment of second-order arithmetic
known as RCA0, whose proof-theoretic ordinal is simply ωω. If that is right, then it is
hard to see how any approach in the vicinity can justify enough transfinite induction
to carry out the Gentzen proof.

Finally, we turn to more expansive constructivist systems. The most prominent of
these are (a) constructivist set theory in the form of CST (for “Constructive Set The-
ory”) and IZF (for “Intuitionistic Zermelo-Fraenkel”) and (b) constructivist type theory
in the form of the system proposed by Martin-Lof.63 The former might be viewed
as capturing certain constructivist conceptions of the universe of sets; the latter as a
constructivist approach to type theory and higher-order logic. Needless to say, as one
would expect from frameworks that have been proposed as foundations for construc-
tive mathematics, a great deal of mathematics can be carried out within them. For our
purposes, each appears to incorporate significant arithmetical commitments: both con-
structivist set theories incorporate axioms of infinity, asserting in effect that the set of
natural numbers exists; Martin-Lof type theory contains a type of natural numbers, sat-
isfying analogues of the usual axioms. In particular, these approaches each overshoot
in our sense, for each is capable of interpreting HA (as well as a great deal beyond).

This concludes our discussion of foundational stances and the formal systems to
which they give rise. Having examined all of the most natural foundational stances and

62Rumfitt [2015], p. 288.
63For CST and IZF see Aczel and Rathjen [2010]; for Martin-Lof type theory, see Martin-Löf and Sambin

[1984].
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formal equivalence theses, we have seen that none motivates the premises of Gentzen’s
proof in a way that does not, more directly, motivate Peano arithmetic. In light of
this, it is difficult to defend the view that the proof provides a real vindication of the
consistency of arithmetic.

6. Concluding Remarks

Our fundamental question has been whether Gentzen’s consistency proof is a genuine
proof in the epistemic sense: whether it can be used by a mathematically reflective
agent to gain new or enhanced justification in the consistency of arithmetic. The first
two parts of our discussion led to broadly favourable conclusions. We examined the
main argument that the proof is circular, and saw that it fails due to its ability to fully
appreciate the restricted scope of the required induction principles. A notion of trivial-
ity for consistency proofs was introduced – roughly, a proof is trivial when it is unable
to rule out any antecendely coherent positions about the consistency/inconsistency of
mathematical theories – and we saw that the Genzten proof is non-trivial in this sense.
The last part of the discussion, however, led us to a less optimistic conclusion: al-
though the proof is not circular or trivial, it fails to constitute a real vindication of the
consistency of Peano Arithmetic, for there is no foundational stance which motivates
the principles it uses but which does not more directly motivate Peano Arithmetic, and
hence its consistency, itself. If all of this is right, then perhaps of all of the commenta-
tors on Gentzen’s proof, perhaps Tarski was the closest to the truth: it should raise our
confidence in the consistency of arithmetic, but only by about an epsilon.

I will conclude by mentioning some possible directions for further investigation.
First, our discussion of whether the proof constituted a real vindication appealed to a
specific – some might say, an old fashioned and ‘foundationalist’ – conception of math-
ematical justification, according to which justification arises from some underpinning
foundational stance. But of course, that is not the only possible view one might have of
mathematical justification; it would be interesting to know whether the Gentzen proof
fares any better under any of the alternatives. Second, there exist other consistency
proofs for arithmetic: most notably, Gödel’s ‘Dialectica Interpretation’ which proves
the consistency of arithmetic in a system of primitive recursive functions of higher
type. I suspect that this proof is not circular or trivial for reasons similar to those pre-
sented above for Gentzen’s proof, but do not know whether there is some foundational
stance that motivates its premises without more directly motivating PA. Finally, since
Gentzen, proof theorists have expended considerable effort on producing ordinal anal-
yses of theories beyond PA. In addition to the mathematical information that these
ordinal analyses provide, they can also be viewed as consistency proofs, since an or-

29



dinal analysis of a theory T yields a theorem to the effect that for some ordinal (and
associated notation scheme) α, PRA+ TIQF

PR(α) ` ConT. Do such theorems constitute
real vindications of consistency? An investigation analogous to that of the previous
section could presumably be carried out. As the theories under consideration grow
stronger, it becomes harder to ‘overshoot’ in our sense, and so it is not at all obvious to
me how such an investigation would conclude.
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Peter Smith. An Introduction to Gödel’s Theorems. Cambridge University Press, 2012.
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