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Abstract

A major challenge in the philosophy of mathematics is to explain how mathemat-
ical language can pick out unique structures and acquire determinate content. In
recent work, Button and Walsh have introduced a view they call “internalism’, ac-
cording to which mathematical content is explained by internal categoricity results
formulated and proven in second-order logic. In this paper, we critically examine
the internalist response to the challenge and discuss the philosophical significance
of internal categoricity results. Surprisingly, as we argue, while internalism ar-
guably explains how we pick out unique mathematical structures, this does not
suffice to account for the determinacy of mathematical discourse.

1. Introduction

Many philosophers have been concerned with the challenge, made famous by Benacer-
raf (1973), of providing a naturalistic account of the epistemology of mathematics. But
there is a perhaps more fundamental challenge, raised originally by Putnam (1980), of
providing a naturalistic account of the content of mathematical language.!

According to a pre-theoretically appealing picture of mathematical language and

its content, large and significant areas of mathematics have the following features:?

Uniqueness. The content of the relevant vocabulary is sufficiently rich so as to ‘pick

out” a unique mathematical structure.

LAll of the issues we will discuss apply equally well to mental as to linguistic content. However, for
brevity, we will speak as if the problem is fundamentally a linguistic one.

2This picture is not obviously committed to platonism or ontological realism about mathematics. Its
appeal to a notion of structure can be understood for now loosely, used in roughly the informal mathe-
matical sense. Although some theoretical philosophical developments involve reifying structures as self-
subsistent entities, nothing in the picture itself requires this. Indeed, the picture can be endorsed even by
fictionalists, provided that they regard the fiction as rich enough to settle every arithmetical question. (On
fictionalism see Field (1980) and the essays in Field (1989). Field’s own views on determinacy are complex;
see Field (1998) for an argument that arithmetical vocabulary is determinate in virtue of its inferential links
to physical vocabulary and certain cosmological hypotheses.)



Determinacy. The content of the relevant vocabulary is sufficiently precise as to ensure
that no questions are left open, that is, each claim is either determinately true or
determinately false.

Consider arithmetic. When we use the language of arithmetic, it is natural to suppose
that we have a unique structure in mind: the natural number structure. As a consequence,
it is natural to regard any arithmetical question as yielding a definite answer. Are there
infinitely many prime numbers that differ by 2? The twin prime conjecture famously
answers ‘yes’. Although we have not currently proved or refuted the twin prime con-
jecture, it is intuitively hard to see how it could lack a determinate truth-value. After
all, if we could run through the natural numbers, we would ultimately find out the an-
swer. Of course, there are infinitely many numbers, so we cannot actually run through
them; but this looks like a medical impossibility, not a mathematical one.?

So we face the following challenge:

Putnam’s Challenge. What, if anything, explains uniqueness and determinacy to the
extent they arise in mathematics?*

One possible view is that we possess a special faculty — e.g. ‘mathematical intu-
ition” — which somehow connects us with the mathematical realm and which helps
to fix mathematical content, perhaps as perceptual or causal acquaintance helps to fix
certain kinds of empirical content. However, it is difficult to reconcile this idea with
naturalistic views of the human mind, which neither postulate the existence of such
faculties nor hold out any real hope of vindicating them. Following Putnam, say that a
view is moderate if it adheres to this kind of naturalism.

Moderation severely limits the resources available to explain mathematical content.
If uniqueness and determinacy hold, then these metasemantic facts must presumably
be explained by mathematical practice, i.e. the way in which the relevant vocabulary
is used.> More specifically, our mathematical practice can be characterized in terms of
(a) the mathematical theories we accept, and (b) the logical resources used in drawing

out the implications of our theories via proof. For now we don’t assume any particular

3Cf. Russell (1935, p. 143).

4The locus classicus is Putnam (1980), although he does not put it in exactly these terms. A closely
related (‘metasemantic’) explanatory challenge, focusing on determinacy, is developed by Warren and
Waxman (2020). Button and Walsh (2018) present what they call a “doxological” challenge focusing on
uniqueness; their challenge is presented primarily as a problem for the view they call ‘modelism’, for
more on which see §2.

5This claim might be denied by those who endorse a Lewis-inspired account of metasemantics assign-
ing a central role to eligibility. Proponents of this view might hold that facts about the objective eligibility
of certain mathematical structures partially explain the content of our thought and talk. We put such views
aside for two reasons. First, we have our doubts that they are really acceptable on naturalistic grounds.
Second, the appeal to eligibility arguably requires ontological commitments to reified structures in order
to get off the ground; consequently, it is worth considering how less committal views fare.



formalization of mathematical theories or logic — something much discussed in what
follows. With that said, moderation does impose constraints on how exactly these no-
tions are fleshed out. On naturalistic assumptions about creatures like us, any theory
we are in a position to accept is recursively axiomatized, and every proof system we
are in a position to use is one in which proofs are finite and the property of being a
proof is algorithmically checkable.®

Putnam’s Challenge is especially pressing for moderates in light of landmark re-
sults in the foundations of mathematics in the early 20th century — in particular, the
Lowenheim-Skolem theorems and Godelian incompleteness — which provide strong
prima facie obstacles for any naturalist account. In their recent book Philosophy and Model
Theory and standalone papers, Tim Button and Sean Walsh have developed a view
which they call ‘internalism” or ‘internal realism’ (reflecting its inspiration by work of
Putnam).” Button and Walsh motivate internalism primarily as a moderate account of
mathematical content capable of answering Putnam’s Challenge and overcoming the
obstacles raised by the limitative metamathematical results above.

In what follows, we will critically examine internalism and the internalist response
to Putnam’s Challenge. We will argue that although internalism sheds considerable
light on metasemantic questions surrounding mathematics, it is nevertheless unable
to give a satisfying account of the determinacy of mathematical content. Ultimately,
we will argue, the philosophical constraints imposed by the Lowenheim-Skolem the-
orems and Godelian incompleteness — precisely the results responsible for generating
the challenge in the first place — cannot be so easily overcome. While internalism is the
main target of the paper, we discuss a number of important topics along the way, in-
cluding the philosophical significance of (both internal and model-theoretic) categoric-
ity arguments, the standing of second-order logic, the metasemantics of determinacy,
and the relationship between uniqueness of structure and determinacy of content. Sur-
prisingly, as we will argue, even if internalism successfully explains how we pick out
unique mathematical structures, this does not suffice to account for the determinacy of
the relevant mathematical discourse.

Before introducing internalism (§3) and our objections to it (§§4-5), we first say more

The main source of support for the recursive axiomatizability of our theories comes from the com-
putational theory of mind: in brief, if the human mind does not have computational powers that exceed
those of any Turing machine, then the recursive axiomatizability of our theories follows. Of course, this
theory of mind has been denied; see for instance Lucas (1961), Penrose (1989), and those following them.
But our point here is simply that the computational view is plausibly a non-negotiable commitment of
naturalism of the sort that moderates endorse.

7See Button and Walsh (2018) for the fullest expression of the view, Button and Walsh (2016) and Button
(2022). Button and Walsh (2018) are explicit that they should not be read as advocating internalism; their
stance towards it is perhaps better described as one of sympathetic exploration (though see Button (2022)
for a fuller defence). In order to avoid constant hedging of this kind, however, we will speak as if Button
and Walsh straightforwardly defend the view.



about Putnam’s Challenge and the failure of some natural responses to it.

2. Moderate Modelism

Putnam’s Challenge arises, fundamentally, from philosophical implications of the Léwenheim-
Skolem theorems and Godelian incompleteness. In introducing the difficulties these
results pose for moderate views, we will first show how they arise given two highly
substantive assumptions, both of which will later be relaxed. Our discussion focuses

(for the most part) on arithmetic, but it should be clear how it generalizes.

The first assumption, widespread in the philosophy of mathematics, is that mathe-
matical structures are properly understood in terms of isomorphism types, i.e. classes
of isomorphic models. Button and Walsh refer to this view as ‘modelism’. Thus, in or-
der to explain uniqueness and determinacy for arithmetic, moderate modelists must
identify an arithmetical theory all of whose models are isomorphic to one another. The
second assumption is that our theories can be properly formalized in first-order logic.

Given these two assumptions, trouble arises. Take uniqueness first. By the Lowenheim-
Skolem theorems, any consistent first-order theory of the natural numbers (indeed, any
theory with infinite models) has infinitely many non-isomorphic models. Given mod-
elism, this implies that no first-order theory of arithmetic is capable of picking out a
unique structure. Turn next to determinacy. As Godel showed, any consistent recur-
sive first-order theory enabling minimal arithmetical reasoning is bound to leave many
statements undecided. So, given moderation, and if sentences are determinate to the
extent that they are decided by the theories that capture our mathematical practice, this
implies that no such theory can underwrite the determinacy of arithmetic.

The natural response is for moderate modelists to question the assumption that our
theories are adequately formalized in first-order logic. A seemingly more promising
strategy involves considering second-order formalizations instead, allowing quantifica-
tion into predicate and function position.®

Second-order arithmetic, PA;, is formulated in a second-order language, Lpa,. All
first-order axioms are retained except for the induction schema, which is replaced by a

single second-order universally quantified axiom. Thus, PA; can be identified with the

8For arguments that second-order languages better capture various aspects of informal mathematics,
see Kreisel (1967) and Shapiro (1991).



following conjunction:’

(PA,) NO A Vx (Nx — NSx) A
Vx (Nx — Sx #0) A
VaVy (Nx ANy — (Sx =Sy - x=1y)) A
VX (X0 A Vx (Nx — (Xx — XSx)) — Vx (Nx — Xx))

The interesting feature of second-order theories is that they appear to offer a way
around the limitative results. In particular, the Lowenheim-Skolem theorems do not
extend to second-order logic, provided that second-order consequence is defined in
terms of full models. These are models in which the second-order quantifiers range
over the full power set of the first-order domain. Indeed, relative to this class of mod-

els, second-order arithmetic is categorical:
Theorem 1 (Dedekind Categoricity). All full models of PA; are isomorphic.*®

Categoricity is a highly appealing feature. On the modelist view, categorical theories
pin down a unique structure, since they have only models of a single isomorphism-
type. Categoricity also promises determinacy: if a theory is categorical, then for every
sentence in the language of the theory, either it is true in every model of the axioms or

its negation is:

Corollary 2 (Dedekind Intolerance). Every sentence of Lpa, is either true in all full models
of PA; or false in all of them.

So, assuming the moderate modelist can appeal to full second-order logical con-
sequence, a satisfying answer to Putnam’s Challenge seems available. However, this
appeal is usually regarded as unsuccessful, for reasons we broadly endorse.!!

Full models are a subclass of the broader class of (faithful) Henkin models, in which
the second-order quantifiers may range over any given subset of the power set of the
first-order domain that validates the Comprehension Schema.!?

Full models and Henkin models give rise to different notions of semantic conse-
quence, corresponding to truth preservation in the relevant class of models. The dif-
ferences are significant. There are recursive proof systems — natural generalizations of

the familiar calculi for first-order logic — which are sound and complete with respect to

9Button and Walsh refer to this theory as PAjp;.
108ee Dedekind (1996).
WFEor the locus classicus see Weston (1976); for discussion see also Field (2001, postscript to chap. 12),
Parsons (2008, §48), and Warren (2020, p. 244).
2That is, 3X"Vx1 ... Vx, (X"x1...x5 <> ¢(x1,...,%)), where ¢ is any formula in which X" does not
occur free. For details see Shapiro (1991, §3.2).



Henkin consequence. On the other hand, it follows from Godel’s theorems that no re-
cursive calculus can be sound and complete with respect to full consequence. Henkin
consequence behaves much more like first-order consequence than full consequence.
In particular, the Lowenheim-Skolem theorems apply, meaning that any theory with
infinite models has infinitely many non-isomorphic Henkin models; and, by complete-
ness, Godel’s theorems entail that any theory containing enough arithmetic will give
rise to sentences such that neither they nor their negation are true in all Henkin models
of the axioms.

These technical details give rise to a powerful philosophical objection to the mod-
erate modelist who wishes to appeal to Dedekind Categoricity and Intolerance. Recall
that the ‘moderate” part of moderate modelism involves a commitment to a naturalis-
tic metasemantics; as we argued above, this involves explaining mathematical content
in terms of (a) recursive mathematical theories, and (b) a recursive notion of proof.
But these resources simply cannot do what the moderate modelist needs: to exclude
Henkin models as somehow unfaithful to our practice. For (if consistent), PA; has
non-isomorphic Henkin models which make different sentences true. But no (recur-
sive) calculus that is sound with respect to full consequence will be able to rule such
models out. So moderate modelists cannot appeal to the notion of full second-order
consequence to extract philosophical conclusions from Dedekind Categoricity and In-
tolerance.

The moderate modelist might argue that non-full models are excluded, not by PA;
or its proof-theoretic consequences, but rather by ascending to a set-theoretic metathe-
ory in which the distinction between full and Henkin models can be expressed. That is,
the moderate modelist might hope to be able to define the notion of a full model of Lpa,
using set-theoretic vocabulary in such a way that, in every model of set theory, the ob-
jects satisfying the definition are indeed (all) full models of Lpa,. The problem is simply
that a directly analogous issue recurs at the level of the metatheory.!® (One might say,
following Putnam (1980), that the metatheoretic distinction between full and Henkin
models is ‘just more theory’.) Suppose (for a moment) that the set-theoretic metatheory
is a first-order theory. Then, that theory will itself have non-isomorphic interpretations
- My and M; — with non-isomorphic internal models of PA; — w; and w;: that is, wy
satisfies the definition of a full model of PA, in M3, and the same for w; in M,. As
long as ‘non-standard” models cannot be ruled out for the metatheory, it cannot rule
them out for the object theory either.

The moderate modelist will likely reply that these results are fatal if the set-theoretic

metatheory is a first-order theory but note that results analogous to Dedekind Categoric-

13See Parsons (2008, p- 274).



ity and Intolerance can be proven for second-order set theory, ZFC,.1* However, here
again the dialectic recurs. To argue that these results have philosophical significance,
the moderate modelist must insist that only full models are admitted. For if Henkin
models are allowed, then a version of Parsons’ point holds once again: there are non-
isomorphic Henkin models of ZFC; and, what is more, models with non-isomorphic
internally full models of PA2.> But this defeats the whole purpose of the move to a
set-theoretic metatheory. The point of that move was to legitimize the restriction to full
models; but the results above show that such a restriction must be instead presupposed.

In short: the moderate modelist simply lacks the metasemantic resources to exclude
Henkin models, and thus, cannot appeal to Dedekind Categoricity and Intolerance to

explain uniqueness and determinacy.

3. Internalism

Button and Walsh’s internalist alternative to modelism involves two central ideas. The
tirst is a rejection of the thought that the apparatus of second-order logic requires any
further interpretation, via set theory or otherwise. Rather, the internalist emphasizes
that the meaning of second-order quantifiers (and other terms of the language) can
be explained instead by their inferential behaviour. Thus, they propose that second-
order theories can be worked with directly, in the object language, using one of the
many available natural proof systems. Since proofs in these systems are finite and
algorithmically checkable, they are perfectly respectable from a moderate perspective.
By rejecting the need to interpret second-order quantifiers, internalism thus avoids one
of the main problems above for modelism: how to single out full rather than Henkin
interpretations.

The second characteristic idea is that informal talk of structures should be regi-
mented, not in model-theoretic terms, but internally, within the (second-order) object
language itself. Take the informal claim that there exists a natural number structure.
Modelists, as before, would regiment it as a claim about models, i.e. a certain kind of

set inhabiting the first-order domain, roughly as follows:

4More precisely, ZFC, is quasi-categorical (as shown by Zermelo (1930)): any two full models of ZFC,
are either isomorphic to one another or one is isomorphic to a proper initial segment of the other. There is
also an analogue of intolerance: while quasi-categoricity does not enable full intolerance, it nevertheless
holds for sentences which are ‘decided” at low levels of the iterative hierarchy, such as the continuum hy-
pothesis (which concerns the size of the continuum and is thus “settled” in V,, 4 2); Kreisel (1967) famously
argues from this to the determinacy of the continuum hypothesis. Of course, ZFC, is not the only second-
order set theory in town: Button and Walsh (2018) propose a variant of Scott-Potter set theory for which
they prove full, not merely quasi, categoricity and intolerance.

15Internally full’ in the sense that they satisfy the definition of fullness in the ZFC; models at issue.



dx (Model(x) A x F PAy)

where F expresses truth-in-a-model, definable in set theory. Internalists instead under-
stand ‘there exists a natural number structure’ not as involving first-order quantifica-

tion over models construed as objects, but rather using second-order resources:
INzS PA;(N,z,S)

where PA;(N, z, S) is the characteristic axiom of second-order arithmetic, PA;, in which
N, z, and S have been replaced with free variables N, Z, and S of the relevant kind.
More generally, structure-talk is not to be regimented in terms of model-theoretic inter-
pretations; rather, it is understood in second-order terms:

The internalist manifesto. For philosophical purposes, the metamathemat-
ics of second-order theories should not involve semantic ascent. Instead, it
should be undertaken within the logical framework of [the] very theories
under investigation. Our slogan is: metamathematics without semantics!
(Button and Walsh, 2018, p. 227)

How does this all bear on Putnam’s Challenge? To provide a satisfying response to
uniqueness, internalists must explain how e.g. PA; suffices to pick out a unique natural
number structure, understood in terms of their proposed regimentation of structure-
talk. Similarly, for determinacy, it must be explained how arithmetical claims are de-
termined by e.g. PA,, using exclusively resources available to the internalist. Dedekind
Categoricity and Intolerance are no longer available, as they only concern structures
understood model-theoretically.

The crucial move in Button and Walsh’s response to Putnam’s Challenge involves
an internal categoricity result.!® Suppose that Nj,z1,S; is an ‘internal PA,-structure’,
i.e. PA2(Ny,z1,51), and similarly Ny, zp, Sp. Then, the following expresses that R is an
isomorphism between the two:

Vx (Nix — 3y (Nay A Rxy)) AVy (Nay — 3lx (N1x A Rxy)) A
Rzyzp AVxVy (N1x A Noy A Rxy — R(S1x, S2y))

Let us abbreviate this claim by N1z15; g N>z55,. Note that, strictly speaking, these ‘in-
ternal structures’” are not objects in their own right, bearing the relation of isomorphism
to each other; rather, the claim that two structures are isomorphic is shorthand for the
complex higher-order claim above.

16For Internal Categoricity, as distinct from Dedekind Categoricity, see Vaananen and Wang (2015).



Theorem 3 (Internal Categoricity). The following is provable in second-order logic:
VN]Z]Sl VNQZQSz (PAZ(N],Z], 51) A\ PAz(Nz, Z7, 52) — dR (N1Z1Sl g NzZzSz))

Internal Categoricity and its consequences are central to the internalist response to
Putnam’s Challenge. The relevance to uniqueness should be clear: for if structure-
talk is regimented as the internalist recommends, then Internal Categoricity says that
all PAs-structures are isomorphic. What is more, Internal Categoricity is provable in
second-order logic alone. Unlike Dedekind’s Categoricity Theorem, it does not require
any set-theoretic metalanguage. Thus, internalists argue, the uniqueness of the natu-
ral number structure can be established internally, via proof, without appealing to any
resources beyond second-order logic itself.

Turning from uniqueness to determinacy, Button and Walsh appeal to the follow-
ing immediate consequence of Internal Categoricity, in effect an internal version of

Dedekind Intolerance:

Corollary 4 (Internal Intolerance). For each formula ¢(N, z,S) in which all quantifiers are
restricted to N and all free variables displayed, the following ‘Intolerance Schema’ is provable
in second-order logic:

(IS)  VNzS (PA:(N,z,S) = ¢(N,z,5)) V VNzS (PA:(N,z,S) — —¢(N,z,S))

Button and Walsh’s core contention is that Internal Intolerance can be used by the inter-
nalist to establish the determinacy of arithmetical claims. This argument will occupy
us for much of the rest of the paper, so it is worth stating in detail.

The following operator is definable in pure second-order logic:

t¢ := VNzS (PA2(N,z,S) = ¢(N,z,S))

The crucial move made by internalists is to understand this operator as expressing de-
terminate truth. The idea is deceptively simple: first, on internalist grounds, t¢ should
be roughly glossed as saying that ¢(N, z, S) holds in all PA,-structures. Second, a super-
valuationist conception of determinacy is offered: ¢ is determinately true iff $(N,z,8S)
holds in all internal PA,-structures and determinately false if ~¢(N, z, S) holds in all
these structures.

Following Button and Walsh, let us use ‘truth-internalism” to refer to this view.
Truth-internalism appears to be a plausible account of determinate truth. And if it is
granted, then the way appears clear for an appealing response to Putnam’s Challenge:
Internal Intolerance can be interpreted as saying that, for each sentence of arithmetic,

it is provable in second-order logic that it is either determinately true or determinately



false. As with Internal Categoricity, second-order logic is used internally, to prove
claims directly, without recourse to set theory, models, or ascent to any kind of met-
alanguage. And since proofs in second-order logic are, by all accounts, acceptable to
moderates, it looks as if internalism has done the impossible: to provide, in the face of
the Lowenheim-Skolem theorems and Godelian incompleteness, a naturalistic expla-
nation of the uniqueness and determinacy of arithmetical structure and discourse.

In short, the internalist explanation of determinacy is as follows:

(a) For every arithmetical claim ¢, either t¢ or t—¢ (from Internal Intolerance).

(b) If t¢, then it is determinately true that ¢, and if t—¢, then it is determinately false
that ¢ (from truth-internalism).

(c) Therefore, every arithmetical claim is either determinately true or determinately
false.

In the rest of the paper, we will argue that this argument is unsuccessful: the limitative
results cannot be so simply sidestepped by ‘going internal’. Subsequent sections at-
tack each premise above. In §4 we argue that the internalist is not entitled to appeal to
Internal Intolerance in the way required by (a), due to its metalinguistic character. In-
ternalists are entitled to the instances of (IS), as they are provable in PA,. But although
this might show that each particular arithmetical claim is determinate, it does not allow
the conclusion that every arithmetical claim is determinate. In §5 we challenge (b) by
questioning truth-internalism, and suggest that the determinate truth of a sentence of
arithmetic cannot be understood as truth in all arithmetical internal structures, as inter-
nalists suggest. The unifying thread of our criticisms is something like this: even when
moving to second-order (or more generally higher-order) theories, the Lowenheim-
Skolem theorems and Godelian incompleteness phenomena are bumps under the rug
that do not go away.

4. Expressing Intolerance Internally

How can the internalist appeal to Internal Intolerance to establish premise (a)? The
situation might seem promising. Internal Intolerance says that, for every sentence ¢ in
the language of PA;, it is provable in second-order logic — and, thus, in PA; — that either
¢ or its negation holds in every internal PA;-structure. Since our calculus is sound, it
follows that every sentence of the language is such that either it or its negation holds in
every internal PA;-structure —i.e. premise (a) obtains. So Internal Intolerance seems to
say exactly what the internalist needs.

10



The problem, however, is that Internal Intolerance is a metalinguistic result (not a
theorem of second-order logic or PA; but a claim that infinitely many sentences of a
certain form are provable in it), and thus not available to the internalist. Recall the
internalist’s manifesto (cf. §3): an explanation of the determinacy of PA; should appeal
only to what is provable in PA,.

So, Internal Intolerance shows the internalist can assert every instance of (IS). And
granted premise (b), it follows that for each sentence ¢, internalists can assert that it is
determinately true or determinately false that ¢.” But there is a big difference between
this and the claim that internalists can show that, for every sentence ¢, determinately ¢.
The difference lies in the scope of what internalists are in a position to assert: Internal
Intolerance allows them to assert the determinacy of each arithmetical claim, but not
that every arithmetical claim is determinate.

Although the difference may seem minor, it is highly philosophically significant.
To see why, consider the analogous case of consistency statements. Let Proofpa be the
usual proof predicate for first-order Peano arithmetic, PA. Compare the generaliza-
tion Vx —Proofpa(x, 0 # 0') — Con(PA), for short — to the collection of its instances —
—Proofpa(t,"0 # 0'). The universal claim, but not the totality of the instances, is typi-
cally regarded as expressing that PA is consistent. Indeed, PA proves each instance, but,
by Godel’s second incompleteness theorem, if consistent, it does not prove the general-
ization Con(PA) — a fact typically interpreted as that PA is incapable of proving its own
consistency.

Returning to internalism: internalists wish to establish that arithmetic is determi-
nate — that is, that all arithmetical sentences are either determinately true or determi-
nately false, but Internal Intolerance entitles them at best to say, of each arithmetical
sentence, that it is determinate. This is not nothing, but the generalization is still philo-
sophically important. Indeed the internalist’s position with respect to determinacy is
analogous to the position of a PA-theorist with respect to consistency. The PA-theorist
can establish that this number does not code up a proof of inconsistency, likewise this
number, and so on..., but is limited to these piecemeal individual claims — the gener-
alization that no number codes up a proof of inconsistency lies out of reach. Similarly,
the internalist has the piecemeal individual claims that this sentence is determinate,
likewise this sentence, and so on..., but the generalization that no sentence is indeter-
minate, corresponding to their philosophical claim about determinacy, is out of reach.

Button and Walsh (2018, §10.8) and Button (2022) recognize that this is a problem,
and seek instead a substitute for Internal Intolerance that generalizes (IS) in the object

language.'® In particular, they recommend that internalists appeal to a single, arithme-

17 Again, we dispute the premise in §5.
18This is clear not only from the fact that they put forward (AII) (see below) for this purpose in §10.8

11



tized version of Internal Intolerance, in effect formalizing the following principle, which

we'll call ‘Arithmetized Internal Intolerance’:

(AIl) For any code of a formula ¢(N, z,S) whose quantifiers are restricted to N and
whose free variables are displayed, there is a code of a deduction of (IS) in second-

order logic.

As it turns out, (Al) is not only expressible but also provable in PA;. Button and Walsh
conclude that internalists are able to express the determinacy of arithmetic and establish
it deductively in PAy, without metalinguistic ascent.!?

Unfortunately, matters are not so simple. We argued above (and take Button and
Walsh to agree) that, in order to substantiate their philosophical claim that arithmetic
is determinate, internalists must do more than merely establish the instances of (IS):
they must establish a suitable generalization of it. This raises the question of when a
sentence counts as a generalization over a class of sentences. A natural answer: when
it is obtained from the members of the class using a device of generalization. Of course,
this simply moves the question to saying what constitutes a device of generalization.
This is a complex issue which would be beyond the scope of this paper to answer fully,
but paradigm devices include quantifiers (first- or higher-order) and certain predicates
of sentences — most notably a truth predicate.?? So for example the instances ‘Socrates
is mortal’, “Aristotle is mortal” etc. have as a suitable generalization ‘all humans are
mortal’; the instances of the induction scheme (¢(0) A Vx (¢(x) — ¢(Sx)) — Vxp(x))
have as a suitable generalization the second-order induction axiom VX (X0 A Vx (Xx —
XSx) — Vx Xx)); and perhaps the most natural generalization of the Comprehension
schema IXVx(Xx <> ¢(x)) is to say that any instance is true.

A plausible necessary condition on generalizations is that they entail their instances.
For example, universally quantified statements entail their instances by the usual log-
ical inference rules. Truth generalizations, on the other hand, typically entail their in-

stances by elimination principles such as

(T-Out) True("¢") — ¢

of their book but from their efforts in chapter 12, where they worry about the ability of (AIl) to serve this
purpose, highlight the need of more suitable principles, and consider alternative ways of generalizing
(IS).

Strictly speaking, arithmetization does involve metalinguistic ascent. Taken at face value, the ex-
pressions of Lpa, are about numbers. Only when we ascend to a metalanguage in which the coding is
explicitly introduced can we give Lpp, a syntactic reading. The issue can be easily sidestepped by work-
ing directly in a (second-order) syntax theory, e.g. of the kind defended in Mount and Waxman (2021); see
also Corcoran et al. (1974)). Such a theory would in effect be a notational variant of PA;, so no generality
is lost by speaking of PA; as a syntax theory (as we will continue to do).

20For a discussion on the conditions a predicate must satisfy to function as a device of generalization,
see Picollo and Schindler (2017, 2018).
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In claiming that (AIl) generalizes the Intolerance Schema, internalists in effect at-
tempt to use a provability predicate as a device of generalization — provability in second-
order logic, to be more specific. But, as we now argue, there are deep reasons — related
to Godelian incompleteness — why internalists cannot argue this way. As we mentioned
before, we are tempted to regard Internal Intolerance as a generalization of (IS) be-
cause (i) it asserts that every instance of (IS) is provable in second-order logic and (ii)
because, from a metatheoretic perspective, we regard our calculus to be sound: we take

provability in it to obey an elimination principle analogous to (T-Out), that is,
(Rfn) Provg("¢') — ¢

But although this reasoning is cogent when applied to Internal Intolerance in the met-
alanguage, no analogous reasoning is available for (AII) in PA;, as we will now show.

PA; contains a provability predicate for second-order logic, Provg(x), satisfying
weak representability and Lob’s derivability conditions.?! But it is a direct consequence
of Lob’s theorem, which is actually equivalent to Godel’s second incompleteness theo-
rem,?? that Prov(x) cannot obey (Rfn) in PA,, on pain of triviality.

Observation 5. If PA; is consistent, then it does not prove all instances of (Rfn) for every

sentence of the pure language of second-order logic.?®

Proof. Note first that, if PA; proved all instances of (Rfn) for such sentences, it would
also prove
Provg (TPAY—T¢7) — (PAF — ¢)

where PAR is the ramsification of PA; —i.e. INzS PAy(N,z,S) — and — maps any two
formulas to the conditional that has the first formula as its antecedent and the second
one as its consequent. Note also that the following holds in PA; for each sentence ¢ of

the pure language of second-order logic:

Provy ('_PAg—'—)'—(f)—') < Provg ("PA'—2T¢")

2IFor philosophical arguments that these conditions are necessary for a provability predicate, see Hal-
bach and Visser (2014). Where ¢ and ¢ are sentences of Lpa,, the Lob conditions are:

(1) If - ¢, then PA; - Provg ("¢?).
(2) PAy F Prov("p — ¢") — (Provg("¢') — Provg (TyPh)).
(3) PAy F Provg("¢") — Provg("PA; — Provg ("¢p')7).

Weak representability adds to (1) that if PA; F Provg ("¢), then | ¢.

22Gee Smith (2013, p. 255).

23That is, where no subject-specific terms occur. Note that all instances of (IS) are themselves sentences
of the pure language of second-order logic.
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Thus, since PA; entails PAR, we would have that
PA, - PrOVg(l_PAz—'—_)l—(P—') — (P

However, note that Provg("PAy'—x) expresses provability-in-PA;, in the sense that
it satisfies the relevant weak representability and Lob’s derivability conditions. So by
Lob’s theorem, if Provg("PA'—=T¢") — ¢ is provable in PA,, then so is ¢. So, if PA;
proved all instances of (Rfn), then it would have every sentence of the pure language
of second-order logic as a theorem, contradicting its supposed consistency. O

The point of all this is that, as a consequence of Lob’s theorem (itself equivalent
to Godel’s second incompleteness theorem), internalists cannot regard provability in
second-order logic as a device of generalization in PA;: in the absence of an elimina-
tion principle such as (Rfn), generalizations formulated in terms of provability — unlike
truth-generalizations — do not typically entail their instances.?* So (All) is not a gener-
alization of (IS) in PA,.

A natural reply would be to move to a stronger theory in which all instances of (Rfn)
can be proven. Such theories exist, e.g. PA; + (Rfn). However, generalizing the proof of
Observation 5 shows that the resulting theory, if consistent, cannot be finitely axioma-
tizable. This is problematic for the internalist’s purposes. The internalist’s explanation
of how a theory could be unique and determinate appeals to Internal Categoricity and
Intolerance results. But these results cannot even be stated, let alone proven, for non-
finitely-axiomatizable theories. So while any extension of PA; that yields the instances
of reflection may be able to prove a generalization to the effect that PA; is determinate,
it will be impossible for the internalist to prove the determinacy of the stronger theory in
which they are working. But if the internalist wishes to answer Putnam’s Challenge, they
must be in a position to account for the uniqueness and determinacy of this stronger
theory too, as the challenge is to explain uniqueness and determinacy to the extent that

they arise in mathematics in general, not just in PA,.25

240One possible internalist response is to argue that it suffices to find a provability predicate that sus-
tains (Rfn) not in general but for all relevant instances. In other words, since the internalist needs only to
generalize over all and only the instances of (IS), is it enough to note that Provg (x) sustains (Rfn) for such
claims? We are sceptical. Provg(x) sustains (Rfn) for this class only vacuously: since each instance of (IS)
is provable in second-order logic, the relevant instance of (Rfn) is also derivable. But the fact that a pred-
icate satisfies (Rfn) restrictedly is not enough for it to serve as a device of generalization. Consider x = x,
which satisfies the Lob conditions, weak representability, and (Rfn) over the relevant class of sentences.
One would hardly accept that the claim that every instance of (IS) is self-identical is a generalization of
(IS). In order for a predicate to genuinely express a generalization, we need antecedent reason to believe
that it sustains (Rfn) for the relevant class of instances.

25 An alternative way of generalizing over the instances of (IS) is to enrich PA; with a truth predicate.
However, for reasons related to Tarski’s indefinability theorem, this move would also require infinitely
many axioms (cf. Button and Walsh (2018, §12.4)), giving rise to analogous expressibility issues. Yet an-
other way of generalizing (IS) is to move to a fifth-order language, using higher-order resources to ‘code
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This section has argued that, for reasons that trace back to Gédelian incompleteness,
internalists cannot prove a suitable generalization of the Intolerance Schema. Still, as
we mentioned above, they are entitled to the instances of (IS), which is not nothing.
Assuming that truth in all internal PAg-structures can be interpreted as determinate truth,
these instances are enough for the internalist to establish the determinacy of any given
arithmetical claim, even if the generalization over all such claims is out of reach. But in
the next section we argue that even this partial vindication of determinacy cannot be
established, because the interpretation of determinacy as truth in all internal structures
cannot be sustained.

5. Explaining Determinacy

For internalists, the importance of proving an internal intolerance result lies in its sup-
posed connection with determinacy. That connection is given by what we have been
calling “truth-internalism’: the claim that it is determinately true that ¢ iff?°

t¢ := VNzS (PA2(N,z,S) = ¢(N,z,S))

In this section, we will argue against truth-internalism. Even waiving the discussion of
the previous section, internalists cannot explain the determinacy of mathematics in the
way that Button and Walsh claim. To develop the objection, however, we first need to
say a little more about truth and determinacy:.

5.1 Determinacy and Metasemantics

The notions of determinacy and indeterminacy that arise in Putnam’s Challenge and
related areas of philosophy are, fundamentally, metasemantic or metaconceptual notions,

up’ the notion of an interpretation of a language, allowing the definition of a truth-in-a-structure relation
and a truth-in-all-PAy-structures predicate. (Moving up to an eighth-order language in turn allows similar
definitions to be provided for the fifth-order language, and so on). In (Button and Walsh, 2018, chap. 12),
Button and Walsh consider a version of this view, which, they maintain, is in the spirit of internalism.
We think it’s not obvious whether such a view is compatible with internalist motivations (in particular,
the eschewal of semantic ascent), but we don’t propose to address the issue in detail here. At any rate,
this higher-order view seems equally susceptible to the objections raised in the next section. In partic-
ular: since this higher-order view is intended to embrace moderation, it faces an explanatory challenge
precisely parallel to the one we press in §5.

26 Although Button and Walsh officially gloss their operator t in terms of truth, they often speak inter-
changeably of determinate truth. We take it that the issue here is simply a verbal one. We can make sense
of a disquotational or ‘weak’ notion of truth, according to which ‘it is true that p’ is equivalent to ‘p’, and
a ‘strong’ notion according to which ‘it is true that p’ is equivalent to ‘it is determinately the case that
p’. Clearly nothing turns on which notion we use, and equally clearly the sense intended in the gloss of
Intolerance is the strong notion. We will speak in terms of determinacy — indeed Button (2022) himself
speaks this way when offering a parallel presentation of internalism — but we take it that everything we
say would apply equally well if reformulated in terms of truth in the strong sense.
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t.27 For instance, Putnam

concerning the content of our mathematical talk and though
speaks of what is ‘fixed” by ‘the total use of the language (operational plus theoretical
constraints)” (Putnam, 1980, p. 466); similarly, for Field, ¢ is indeterminate if there is
‘nothing in our inferential practice that could determine’ ¢ (Field, 1998, p. 296).

Indeterminacy in this sense may have epistemic implications — if the twin prime
conjecture is indeterminate, that plausibly precludes us from knowing whether it is
true or false; and, to the extent we believe it’s indeterminate, it is presumably pointless
or irrational to continue to inquire into its truth-value. But it is not merely an epistemic
notion. To say that a claim is determinate is to say that its truth-value is settled by the
content-determining facts. So determinacy is closely tied to metasemantic questions, i.e.
about what explains or makes it the case that our words have the semantic features —
meaning, content, etc — that they do.

We believe that the metasemantic nature of determinacy motivates the following
constraint:?8
Metasemantic Explanatory Challenge. Determinacy, to the extent that it arises, must

be explicable.

The idea is that metasemantic properties, like determinacy (or, for that matter, inde-
terminacy) call out for explanation. It would be philosophically unappealing to acqui-
esce in an account on which facts about determinacy are brute or inexplicable. Just as
it would be an abandonment of serious metasemantic theorizing to claim that words
have their meaning as a matter of brute fact (not explained by, say, the conventions
governing their use, or causal chains connecting them with objects in the world, or
some such account), so too for determinacy claims. This is a domain where explana-
tion is needed. We think that Button and Walsh’s moderates will feel the force of this
challenge. As Button (2022, p. 161) says, it would be ‘patently ridiculous’ to treat the
idea that our mathematical practice pins down a unique isomorphism type as an ‘in-
explicable...brute feature of the world.” We are simply making the same point about
determinacy.

Two clarifications are in order. First, to say that determinacy must be explicable
is not to say that we must be able to actually cite an explanation of a sort that would
provide illumination or understanding. We intend something more objective and ide-
alized, perhaps: capable of explanation in principle. Readers who would prefer to put
the matter in more metaphysical terms, perhaps involving grounding, are free to sub-

stitute such terminology.

?’The discussion below is couched in linguistic (as opposed to conceptual) terms simply for brevity.
What we say for ‘metasemantic’ goes equally well for ‘metaconceptual’.
28Cf. Warren and Waxman (2020).
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Second, nothing limits the challenge specifically to mathematics. Its spirit is fully
general: wherever determinacy arises, it must be explicable. For instance, someone
who holds that all physical claims are determinate faces a similar challenge — perhaps
one that can be answered in terms of conventions, causal contact, or similar. The point
is that this is not an ad hoc demand that we are wheeling out to embarrass certain views

of mathematics, but an essential part of a satisfying overall metasemantic picture.

5.2 Internalism Cannot Explain Determinacy

Our objection to moderate internalism is that it is fundamentally incapable of answer-

ing this metasemantic challenge. Consider Button’s succinct encapsulation:

I affirm [PA;] unrestrictedly and unreservedly. With Dummett, I agree that
the NUMBER concept is given to us primarily in terms of proof. Unlike Dum-
mett, though, I rely on an algorithmically-checkable proof system. Then, with
the modelist, I aim to prove the precision of my NUMBER concept, by prov-
ing the categoricity of arithmetic. But, unlike the modelist, I am successful,
and this is because my categoricity result is internal. (Button (2022, p. 171))

But if the concept of natural number is given to us in terms of proof in some suitable
recursive theory (e.g. PAy) formulated in a recursive calculus, then there will be a sen-
tence R (e.g. the Rosser sentence for PA;) such that both R and —R are independent of
the axioms (which we assume to be consistent).”” The internalist proves the relevant
instance of intolerance, tR V t=R, which they interpret as saying that it is either de-
terminately true or determinately false that R. The problem is that this interpretation
leads to explanatory commitments that cannot be discharged.

From Internal Intolerance and their interpretation of t, the internalist is committed
to

(i) Itis determinately true that R or it is determinately false that R.
In §5.1, we argued that determinacy claims, if true, require explanation, that is:

(ii) If it is determinately true (/determinately false) that R, then the fact that it is
determinately true (/determinately false) that R has an in-principle explanation.

But since neither R nor —R can be proven (from the internalist’s recursive theory, with
a recursive notion of proof), and since these exhaust the metasemantic resources avail-

able to the internalist, we have:

29See Smith (2013, chap. 25) for details.
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(iii) Neither the determinate truth nor the determinate falsity of R has an in-principle

explanation.

Since (i)-(iii) forms an inconsistent triad, the moderate modelist has a serious problem.
In short: t cannot be interpreted as expressing determinate truth, on pain of accepting
inexplicable, free-floating facts about the determinacy of our vocabulary. To see the
argument’s full force, it is helpful to consider some possible responses.

First, an immediate worry is that our argument overgeneralizes. It is common in
mathematics to establish a disjunction without having any explanation for either dis-
junct. Simply consider instances of the law of excluded middle. But there is nothing
necessarily problematic about such a situation. It is true that (i)-(iii) above are equally
inconsistent when ‘it is determinately true that R or it is determinately false that R" is
replaced with an arbitrary disjunction P V Q. But in ordinary mathematical cases where
a disjunction P V Q is proven, there is no real pressure to accept the analogues of both
(ii) and (iii). Which exactly should be rejected will presumably depend on the details of
the case and one’s background views of mathematics and mathematical explanations —
which claims one is willing to regard as explanatorily basic, which resources one takes
to be admissible in in-principle explanations, etc. But the disjunction we think prob-
lematic for the internalist is not an ordinary mathematical case: we rely on the fact
that the disjuncts are claims about determinacy, because such claims can’t reasonably be
taken as explanatorily basic — nor explained, given internalist resources.

Second, internalists might challenge (iii) by attempting to recast the point in epis-
temic terms. Consider an analogy from the vagueness literature. Epistemicists about
vagueness hold that it is fundamentally an epistemic matter.>* To the extent that they
accept a notion of semantic determinacy, they therefore hold that all claims, even vague
ones, have determinate truth-values, even if we don’t (indeed possibly can’t) know
what they are.3! In other words, epistemicists occupy precisely the position that this
response is considering, with respect to vague claims as opposed to mathematically un-
decidable ones. Nevertheless, epistemicists do not attempt to say that the determinate
truth or falsity of a particular vague claim is an inexplicable fact; rather, they recognize
that there must be a metasemantic explanation of whichever disjunct obtains, at least in
principle, though they take seriously the possibility that determinacy might supervene
on usage in a way that is unknowable and recalcitrant to theorizing. Can internalists
make a similar move, appealing to the vagaries of metasemantics to claim that the de-
terminacy of R is indeed explained by more basic usage facts somehow, we know not
how?

30Cf. Williamson (1994).
3Many epistemicists talk as if they accept only an epistemic notion of determinacy, but this is primarily
because they think that semantic determinacy is instantiated always and everywhere.
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This seems unpromising. For one thing, the view inherits one of the most troubling
tensions of epistemicism: the suggestion that while nothing systematic can be known
about semantic determination relations, we are nevertheless able to assert the general
principle that whole classes of claims are determinate.3> For another, going this way
seems to involve abandoning the explanatory ambitions of Intolerance: the theorem
would no longer be what explains the determinacy of arithmetic, as opposed to the
(mysterious, unarticulated) metasemantic relations by which meaning supervenes on
use. But most problematically, the internalist is if anything in worse shape than the
epistemicist about vagueness. There is a plausible case that vague terms like ‘bald’
are semantically plastic, in the sense that small changes in the underlying patterns of
use might lead to differences in their meaning or extension. This helps to soften the
blow of the claim that the relevant semantic determination relations are inscrutable.
But nothing plausibly analogous is available in the case of mathematical vocabulary:
there are not slightly different arithmetical practices that might have the relevant kind
of impact on meaning; or at least, if there are, we cannot see them.

A final rejoinder by the internalist might attempt to explain the determinacy of a
given undecidable claim like R using other resources — perhaps a theory of truth, or
higher-order logic — going beyond the theory — e.g. PA; — that they initially accepted. It
should be clear by now why this would be unsatisfactory. For one thing, this move con-
cedes that the initial theory does not suffice to establish the determinacy of arithmetic,
and therefore undermines the use of Internal Intolerance. For another, the threat of
regress looms as before; the determinacy of these additional resources themselves needs
to be explained somehow. But, worst, even if this response can be made with respect
to a given sentence that is undecidable in, say, PA, it simply cannot establish the de-
terminacy of the whole of arithmetic. As long as the additional resources are stated in
a recursive theory, and the relevant notion of proof is also recursive, then there will be
sentences such that neither they nor their negation are provable. Again, we are in a
familiar space of alternatives: internalists are forced either to give up moderation (i.e.
deny that our mathematical commitments can be captured by a recursive theory or re-
cursive notion of proof), accept inexplicable determinacy facts, or — what we suggest —

retract the suggestion that t really does express determinate truth.

6. Uniqueness and Determinacy Revisited

In light of our discussion, how should we understand the philosophical significance of
Internal Categoricity and Intolerance results? Although we have criticized the inter-
nalist’s attempt to use Internal Intolerance to establish the determinacy of arithmetic,

32Gee for instance McGee and McLaughlin (2004) for a criticism of this kind.
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we have said very little to impugn either (i) the central internalist idea that informal
mathematical structure-talk can be understood in second-order terms, or (ii) the use of
Internal Categoricity to establish the uniqueness of the natural number structure.

We have no issue with (i) in this paper. (ii), on the other hand, although correct in
a sense, requires some qualification. Granting (i), the internalist can appeal to Internal
Categoricity to conclude that there are no two non-isomorphic arithmetical structures.
In this sense, the internalist is entitled to conclude that PA; “picks out” a unique struc-
ture. In fact, we are sympathetic to Button and Walsh’s suggestion that the distinction
between theories that “pick out” algebraic structures (like groups, fields, rings, and so on)
vs univocal structures can be elaborated as the internalist suggests, in terms of the pres-
ence of categoricity theorems.®

This might be slightly puzzling. If we have established the uniqueness of some
structure, should we not expect claims about it to have determinate truth-values? Not
really. Although we can show in PA; that there is a unique arithmetical structure, our
theory (indeed, any recursive theory with a recursive calculus) doesn’t tell us what
exactly this structure looks like. In particular, for independent sentences such as the
Rosser sentence R, it tells us that R is true in this structure or —R is, but not which.

The situation can be further clarified by considering a natural account of deter-
minacy for internalists: a claim is determinately true if it can be proven within one’s
theory, determinately false if its negation can be proven, and indeterminate otherwise.
(Presumably everything that is provable or refutable is determinate; and presumably,
in light of the explanatory constraints of §5.1, nothing else can be determinate). The
internalist can prove both Internal Categoricity and the instance of Internal Intolerance
for R, and can therefore accept these statements as determinately true. Internalists can,
furthermore, translate between these formal results and their preferred philosophical
glosses involving structure-talk, so they can claim that it is determinately the case that
there is a unique arithmetical structure, and that R either holds in it or =R holds in it.
The point, however, is that since R is undecidable within the internalist’s theory, this
does not entail that it is determinately true or determinately false that R.3* In other
words, it is not possible to infer from ‘it is determinately the case that R is either true
in all structures or false in all structures’ to ‘either it is determinately the case that R is
true in all structures or it is determinately the case that R is false in all structures’.

Failures of determinacy to distribute across disjunction are familiar from vagueness.
In more-or-less classical theories of vagueness (e.g. supervaluationism), the existence

of (unique!) sharp cut-offs in sorites sequences can be derived, and so on such views it

33Button and Walsh (2018, chap. 7); see Isaacson (2011, §4.3) for an earlier version of this suggestion.

3nternalists cannot of course accept that any sentence is indeterminate in this sense, on pain of
Godelian inconsistency; but we are envisaging this argument not as one that is run by internalists them-
selves, but from an external perspective attempting to get clear on the limits of the view.
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is determinate that there is some unique 7 that is the location of the sharp cut-off. But
it does not of course follow that for some n, it is determinate that n is the location of
the sharp cut off.

We suggest that the internalist is in more or less the same position with respect
to determinacy of truth-value. This is not nothing: the internalist really has shown,
by their own lights, that there (determinately!) cannot be two different arithmetical
structures that disagree over some sentence. But this is very far from the idea that every
sentence has a determinate truth-value. In short: internalists can make a strong case
that mathematics often deals with unique structures; but for all they have said, there is

no reason whatsoever to think that every claim about these structures is determinate.®
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