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Recent work on formal theories of truth has revived an approach, due originally to
Tarski, on which syntax and truth theories are sharply distinguished—‘disen-
tangled’—from mathematical base theories. In this paper, we defend a novel philo-
sophical constraint on disentangled theories. We argue that these theories must be
epistemically stable: they must possess an intrinsic motivation justifying no strictly
stronger theory. In a disentangled setting, even if the base and the syntax theory are
individually stable, they may be jointly unstable. We contend that this flaw afflicts
many proposals discussed in the literature; we defend a new, stable disentangled
theory, double second-order arithmetic.

Introduction

The systematic formal study of theories of truth derives from Alfred

Tarski’s paper ‘The Concept of Truth in Formalized Languages’
(1935). But, in one important respect, contemporary work on truth
has strayed from Tarski’s approach, which sharply distinguishes the

mathematical base theory under analysis from the theory of syntax
whose objects are the strings of the base language. The standard ap-
proach develops a theory of truth over a single mathematical theory—
typically an arithmetical system of some sort—whose objects play a

dual role, both as mathematical entities and as surrogates for syntactic
entities. Syntax is simulated within arithmetic by coding, using tech-
niques familiar from Gödel.1 Despite the mathematical elegance of

coding syntax within arithmetic, there are philosophical reasons to
attend to distinctions collapsed by the contemporary approach.

First, a theory of truth is presumably committed to truth-bearers—in

the Tarskian tradition, sentences. But if so, this commitment should be
reflected faithfully in our truth theories, rather than concealed by way of
coding techniques (however technically useful they are).

1 See McGee (1990), Horsten (2011), and Halbach (2014) on truth theories of this type.
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Furthermore, for some purposes it is important to make fine-
grained evaluations of the resources involved in various combinations

of base and truth theories. For instance, deflationism is often under-
stood as requiring that principles governing truth are conservative
over appropriate base theories. But adding standard compositional

theories of truth to arithmetic (and extending induction to formulas
involving the truth predicate) results in a non-conservative
extension (Horsten 1995; Shapiro 1998; Ketland 1999; Halbach 1999,

2001). In response, some authors have distinguished between instances
of induction whose motivation derives from arithmetic and those
whose motivation derives from syntax (Field 1999; Waxman 2017).
However, in order to make such distinctions cleanly, arithmetic and

syntax must be distinguished in a manner closer to Tarski’s original
approach.

Recently, a number of authors have explored disentangled systems,

in which base and syntax theories are clearly separated (Heck MS,
2015, 2018; Leigh and Nicolai 2013; Nicolai 2015, 2016; and Fujimoto
2019). Our aim in this paper is to discuss a novel set of philosophical

issues arising within this setting. We argue, drawing on an idea due to
Walter Dean (2015), that any adequate total theory must be epistemi-
cally stable: well-motivated on a basis that motivates no strictly stron-

ger framework. Epistemic stability is especially interesting in the
disentangled setting, for an individually stable base theory can be
combined with an individually stable syntax theory in such a way
that the result is nevertheless jointly unstable. We argue that some

systems discussed in the literature fail on precisely these grounds. As
an alternative, we develop a powerful disentangled system we call
double second-order arithmetic (DZ2). DZ2 is not only epistemically

stable but, when combined with a compositional theory of truth,
provides a philosophically natural and metamathematically fruitful
setting for studying the interaction of arithmetic, truth, and syntax.

1. Disentangling Truth and Syntax

Before introducing the notion of a disentangled truth theory, we sketch
a version of the usual, entangled approach as a point of comparison.

We take first-order Peano arithmetic (PA) as a truth-free starting

point to which a truth predicate is subsequently added. PA plays a
double role: as a mathematical theory (about the natural numbers)
and, by way of a Gödel coding, as a theory of syntax. The language of

Peano arithmetic, LPA, contains a constant 0, a unary function
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symbol S, and binary function 0 symbols þ and #, with the obvious
intended interpretations. The axioms of PA are:

(PA1) ;x;yðSx ¼ SyTx ¼ yÞ,
(PA2) ‰'x Sx ¼ 0,

(PA3) ;x x þ 0 ¼ x,

(PA4) ;x;y x þ Sy ¼ Sðx þ yÞ,
(PA5) ;x x#0 ¼ 0,

(PA6) ;x;y x#Sy ¼ ðx#yÞ þ x,

(PA7) Fð0Þ ^ ;xðFðxÞTFðSxÞÞT;xFðxÞ where FðxÞ is a for-

mula of LPA.

We use capital F;C; etc. as schematic letters in our metalanguage for

formulas of the language under consideration; lower-case f;w; etc.
are reserved for variables ranging over codes of formulas, as described
below.

To add a theory of truth to PA, we extend LPA to LT
PA by adding a

one-place predicate T. We fix a Gödel coding pq on strings of LT
PA; T

is intended to apply to a number if it codes a true sentence. The details of

the coding do not matter, provided it is recursive and reasonably natural.
We focus on the full compositional theory of truth, PACT , whose

axioms specify that truth distributes over the logical connectives

and whose arithmetical induction schema includes formulas contain-
ing T.2 PACT results from PA by replacing (PA7) with

(PA7
0) Fð0Þ ^ ;xðFðxÞTFðSxÞÞT;xFðxÞ, where FðxÞ is a for-

mula of LT
PA

and adding:

(CT1) ;t1;t2ðTðt1¼_ t2Þ� t�
1
¼ t�

2
Þ,

(CT2) ;fðT ‰
_

f�‰TfÞ,

2 We use the following notational conventions: ;fF abbreviates ;xðSentPAðxÞTF½x=f�Þ,
where SentPA expresses the property of being the code of a sentence of LPA; ;t � � � and ;v � � �
function similarly for terms and variables. We also use the Feferman dot convention: for

example, ‰
_

expresses the function which yields, when applied to the code of a sentence, the

code of its negation. The functor � abbreviates an expression taking the code of a closed term

to its value; for each number n, n denotes the numeral representing n; and f t1

t2

denotes the

code of the result of performing capture-free substitution of t1 for t2 in f. All of these

syntactic operations are primitively recursively definable in PA (see, e.g., Smith 2013), so the

displayed expressions can be viewed as metalinguistic abbreviations.
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(CT3) ;f;wðTðf
_̂
wÞ�Tf ^ TwÞ;

(CT4) ;f;vðTð;* vfÞ�;tTf t
v
Þ.

In many ways, PACT is an appealing theory: it allows the formalization

of much ordinary metamathematical reasoning, such as the proof
that, since the axioms of PA are true and the rules of inference pre-
serve truth, all theorems of PA are true. It follows that PACT is not a
conservative extension of PA; in particular, PACT proves ConðPAÞ, the

canonical arithmetized consistency statement for PA.
We now turn to the disentangled setting, where, in contrast to the

standard approach, the base theory and syntax theory are separated:

formulated in different languages, to be interpreted as ranging over
distinct sorts of objects.

Given a fixed alphabet, there are two natural ways to provide an

autonomous syntax theory. One takes concatenation as primitive: the
theory contains constants for each member of the alphabet and a
function for concatenation of strings. The other takes adjunction as
primitive: for each symbol in the alphabet, the theory has a function

for the operation of appending that symbol to a string.
Despite the fact that syntax can be developed in either of these

ways, various technical results show that these approaches are in a

precise sense formally equivalent.
First, given a fixed alphabet, second-order versions of the

concatenation-based theory and the adjunction-based theory are syn-

onymous (Corcoran et al. 1974). This implies that there is a translation
which systematically turns any proof in one of the theories into a
proof of the same result (suitably translated into the language of the

other theory).3 Second, theories with alphabets of different sizes are
also synonymous. The upshot of these facts is that it is possible to
work in a particular version of syntax theory, with a fixed alphabet of
any given size, without losing any mathematical generality. Third, one

such theory—the second-order adjunction-based theory with a single
alphabet-symbol—is, up to choice of labelling, identical to second-
order arithmetic (Z2).

3 As Friedman and Visser put it (2014, p. 1), synonymity is ‘the strictest notion of sameness

of theories except strict identity of signature and set of theorems’. While the synonymity

results of Corcoran et al. apply only to second-order versions of the theories in question,

similar but slightly weaker results carry over to first-order formulations (Švedjar 2009, p. 89;

Visser 2009).
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For these reasons, many authors working within the disentangle-
ment programme (Leigh and Nicolai 2013, Nicolai 2015, Heck 2015)

speak as if their syntax theory is formulated in a disjoint ‘copy’ of the
language of arithmetic. As Richard Kimberly Heck puts it, one can
think of the language of the syntax theory as ‘the language of arith-

metic written in boldface’ (2015, p. 451).
This manoeuvre is technically convenient: arithmetical theories

have been extensively studied, and it is useful to be able to import

results wholesale. We shall follow this way of speaking, but we inter-
pret the syntactic domains of the theories we present as ranging over
genuinely syntactic entities. Readers uncomfortable with interpreting
(e.g.) PA as a one-symbol syntax theory are invited to view such

theories as placeholders for ones with larger alphabets and a full
complement of primitive syntactic operations: the results of
Corcoran et al. (1974) and others guarantee that the entire argument

could be carried out in that framework.
We consider the system introduced by Graham Leigh and Carlo

Nicolai (2013), which we call PAb þ PACT
s .4 It is a three-sorted theory;

(i) entities of sort b are natural numbers; (ii) entities of sort s are
syntactic objects; (iii) entities of sort m are ‘mixed’—sequences of
sort-b objects serving as assignments of values to variables (where

variables are syntactic entities).5

The theory of sort-b objects is PA, which we call PAb; its primitives
are 0b; Sb;þb; and #b. The theory of sort-s objects is again PA—we
call this PAs, with primitives 0s; Ss;þs; and #s.

6 Sort-m objects are

handled by introducing three additional primitive notions: a½i�
returns the value of the ith variable, vi, on the assignment a; Denat
returns the denotation of the term t on the assignment a; and Sataf

holds just in case the assignment a satisfies the formula coded by f.

4 We have modified Leigh and Nicolai’s notation for consistency.

5 We understand the syntactic component of Leigh and Nicolai’s theory as referring to

genuinely syntactic objects, not to a mere duplicate copy of the arithmetical objects. Little

turns on this, however; on the alternative reading, similar arguments can be made through an

additional layer of coding.

6 Interpreted syntactically, 0s denotes the null string, Ss represents adjunction of a single

symbol, and þs represents concatenation. #s is the string-expansion operation that stands to

concatenation as multiplication stands to addition. Following Hilbert and Bernays, it can be

seen as a ‘kind of replacement’ (Parsons 2008, p. 255) where each symbol in a string is replaced

by a number of copies (corresponding to the length of the other multiplicand). It is admittedly

a less natural syntactic operation than concatenation, but, as above, readers are invited to treat

PAs as a placeholder for an alternative syntax theory.
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Leigh and Nicolai’s system includes:

(I) All axioms of PA (for objects of sort b);

(II) All axioms of PA (for objects of sort s);

(II) Axiom for sequences:

(SQ) ;a;x;j'bð;iðiÞjTa½i� ¼ b½i�Þ ^ b½j� ¼ xÞ;

(IV) Axioms for denotation and satisfaction:

ðCTDvÞ ;a;i Denav*i ¼ a½i�,
ðCTDcÞ ;a;i Denac*i ¼ ci for each constant-symbol c,

ðCTDf Þ ;a;t1 � � �;tnðDena f* ðt1; . . . ; tnÞ ¼ f ðDenat1; . . . ;
DenatnÞÞ for each function symbol f,

ðCTDatÞ ;a;t1 � � �;tnðSata R* ðt1; . . . ; tnÞ�RðDenat1; . . . ;
DenatnÞÞ for each n-ary relation symbol R,

ðCTD‰Þ ;a;fðSata ‰
_

f�‰SatafÞ,
ðCTD^Þ ;a;f;wðSataf

_̂
w� Sataf ^ SatawÞ,

ðCTD;Þ ;a;f;iðSata ;* vif�;bð;jðjÞiTaðjÞ ¼ bðjÞÞ
TSatbfÞÞ;

(V) Syntactic induction (schema):

ðIndSÞ Fð0sÞ ^ ;kðFðkÞTFðSskÞÞT;kFðkÞ where k is a vari-
able of the syntax theory and F is any formula.

(VI) An axiom stating that the axioms of PAb are true:

(TrAx) ;a;fðAxbfTSatafÞ where Axb is the formula canonic-
ally expressing the property (of syntactic objects) of being
an axiom of PAb.

Leigh and Nicolai (2013, p. 626) show that PAb þ PACT
s ‘ConsðPAbÞ,

where ConsðPAbÞ is the syntactic consistency statement for PAb, i.e.
the sentence in the syntactic vocabulary LPAs

expressing the consist-
ency of PAb. But PAb þ PACT

s 6‘ConbðPAbÞ, where ConbðPAbÞ is the

arithmetical consistency statement for PAb, i.e. the coded sentence in
the arithmetical vocabulary LPAb

expressing the consistency of PAb.
Indeed, PAb þ PACT

s is conservative over PAb (Leigh and Nicolai 2013,

p. 627).
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As Volker Halbach argues, however, it is highly artificial to treat
syntactic and arithmetical consistency sentences asymmetrically in this

way:

[T]he very strict separation of syntax and mathematics that facili-
tates the proof of conservativity just outlined is highly artificial.
Although in informal metamathematics we do distinguish between

syntactic and mathematical objects such as numbers and sets and
the associated theories, we are usually happy to pass from the syn-
tactic consistency statement, to its coded counterpart. [. . .] To

obtain a setting that is more natural than [such a disentangled
theory], one would have to add ‘bridge’ laws between [the base
theory] and [the syntax theory], axioms that allow one to connect
mathematical and syntactic objects. (Halbach 2014, p. 306)

Using a suggestion due to Jeffrey Ketland, Leigh and Nicolai imple-

ment Halbach’s idea by adding ‘coding axioms’, employing a new
primitive cross-type predicate C (for the relation connecting math-
ematical and syntactic objects):

(CodAx1) ;xðCðx; 0sÞ� x ¼ 0bÞ;
(CodAx2) ;x;iðCðx; iÞTCðSbx; SsiÞÞ;
(CodAx3) ;x'!i Cðx; iÞ.

Here x ranges over sort-b objects, i over sort-s objects. In essence,
these axioms (collectively, CodAx) state that there exists an isomorph-
ism between the syntactic objects and the mathematical objects. Leigh
and Nicolai claim that once CodAx have been added, the resulting

theory provides ‘a satisfactory picture of our informal metatheoretic
discussion as characterized in Halbach’ (2013, p. 628).

We think this is at best partially correct: although PAb þ PACT
s þ

CodAx captures some features of informal metamathematics, it fails to
be coherently integrated: the coding axioms, underivable from
PAb þ PAs, cry out for a more fundamental justification than Leigh

and Nicolai provide. In contrast, in the system DZ2CT we shall intro-
duce, versions of CodAx can be derived, rather than merely posited: this
stronger system better reflects our informal metamathematical practice.

2. Epistemically Stable Theories

As presented, the disentanglement programme focuses on combina-
tions of theories: base theories plus theories of syntax, perhaps

Stable and Unstable Theories of Truth and Syntax 7
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enriched with truth-theoretic apparatus. But which combinations of
theories ought to be considered?

Most existing work proceeds from a technical perspective, moti-
vated by the desire to prove theorems as strong as possible using
minimal resources. An example of this approach is Heck’s result

(2015, p. 457) that IS
CT
1

(Robinson arithmetic plus S1 induction
plus compositional truth) proves the syntactic consistency statement
for finitely axiomatized base theories. The result is striking, but it is

difficult to come up with an autonomous philosophical justification
for accepting induction only for S1 formulas.7 In contrast, we adopt a
philosophical perspective, concerned primarily with theories possessing
an internally coherent motivation. To elucidate this notion further, we

appeal to the idea of a foundational equivalence thesis. A foundational
stance is an informal conception of a mathematical domain (e.g. the
natural numbers, the universe of sets, syntactic objects) or mode of

reasoning (e.g. constructive or finitistic proof), corresponding to a prin-
cipled position in the philosophy of mathematics. A foundational
equivalence thesis is a thesis to the effect that a foundational stance is

extensionally equivalent to a given formal mathematical theory.8

Foundational equivalence theses allow us to characterize a class of
systems that can be regarded as epistemically stable. We take this no-

tion from Dean, who ascribes epistemic stability to a system when
‘there exists a coherent rationale for accepting [it] which does not
entail or otherwise oblige a theorist to accept statements which cannot
be derived from [its] axioms’ (2015, p. 53).

‘Acceptance’, here, means non-instrumental acceptance as an inter-
preted theory about an intended class of objects. There are interesting
further questions whether theories can be instrumentally justified by

being ‘reduced’ in some sense (perhaps proof-theoretic reduction or
interpretability) to an antecedently justified theory, as some contend
(Feferman 2000, Hofweber 2000), and if so, whether this justifies

acceptance (as opposed to some other, more instrumental attitude)

7 Perhaps IS1 can be justified on finitist grounds, in virtue of the proof-theoretic reduction to

PRA effected by Parsons’s Theorem (Parsons 1970). However, any such justification would be

instrumental, in the sense discussed below. There is also the further hurdle of finitistically justifying

the truth-theoretic component of IS
CT
1

, since it attributes truth to sentences which (on their

intended interpretation) quantify over infinite domains. Thanks to a referee for raising this issue.

8 For further discussion of Foundational equivalence theses in a different context, see

Waxman (MS). These are examples of the larger class of informal equivalence theses, such as

the Church-Turing thesis—characteristic instances of Kreisel (1967)’s method of ‘informal

rigour’.
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towards the reduced theory. Here, however, we shall not assume that
if T1 is interpretable within or proof-theoretically reducible to T2, then

a rationale for accepting T2 carries over to T1—particularly when T1

and T2 concern different domains of objects. In §4, we argue for a
special case of such a connection where numbers and syntactic objects

are concerned, but we do so on independent grounds, not as a result
of a general claim about interpretability.

From a technical perspective, many theories, including some that are

epistemically unstable, are worth studying. But from a philosophical
perspective, there are compelling reasons to focus upon epistemically
stable theories: at least prima facie, agents who accept an unstable theory
while failing to accept some stable extension of it are irrational, since

they fail to accept all that is justified by their underlying rationale.
Of course, one might desire more from a foundational stance than

mere coherence: a coherent stance might be impoverished relative to

its intended domain or simply misguided. Nonetheless, if a formal
system can be linked to a prima facie coherent foundational stance via
an appropriate foundational equivalence thesis it is reasonable to re-

gard it as internally well-motivated.
Some examples of foundational equivalence theses may help to

clarify the notion:

DEDEKIND’S THESIS (cf. Dedekind 1888): There is a philosophical
conception of the natural numbers according to which they are

the smallest structure containing an initial element 0 and closed
under the successor function. This informal conception is captured
precisely by the formal system of second-order arithmetic (Z2).9

ISAACSON’S THESIS (Isaacson 1987; cf. Dean 2015, pp. 53–54): There is a
distinction between the ‘purely arithmetical’ content of our con-
ception of the natural numbers and ‘higher-order’ content that is
revealed only from an extra-arithmetical vantage point (Isaacson

1987, p. 147). The purely arithmetical truths about the natural num-
bers are captured precisely by the theorems of first-order PA. In
other words, ‘If we are to give a proof of any true sentence of [LPA]

which is independent of PA then we will need to appeal to ideas

9 There is an issue whether second-order theories should be conceived model-theoretically

(with either a full or Henkin interpretation of the second-order quantifiers) or as deductive

systems. It would be anachronistic to attribute any such distinction to Dedekind (who worked,

more or less, in informal set theory). As we only use the deductive system, our claims are

compatible with either approach.
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that go beyond those that are required in understanding PA’ (Smith
2008, p. 1).

TAIT’S THESIS (Tait 1981; cf. Dean 2015, pp. 50–52): Finitism, in the sense
of Hilbert and Bernays (1934–39), is a conception or mode of reasoning
about the natural numbers that does not regard them as a completed
infinite totality. This position is captured precisely by the formal system

of Primitive Recursive Arithmetic (PRA). Slightly less roughly, (i) any
finistically acceptable function is primitive recursive, and conversely
any primitive recursive function is finistically acceptable; (ii) any proof

within PRA is finitistically acceptable, and conversely any finitistic
proof corresponds to a proof in PRA with the same conclusion.

Tait does not claim that the finitist ought to endorse PRA itself. (After
all, PRA is committed to the existence of (infinitely many) total func-

tions on the natural numbers, which cannot be recognized as such by
the finitist.) Rather, like many foundational equivalence theses, the
position is characterized externally. This illustrates a key point: it is
not required for the truth of a foundational equivalence thesis that a

proponent of the foundational stance in question be in a position to
recognize it as true.10

FEFERMAN-SCHÜTTE THESIS (Kreisel 1960b; Feferman 1964; Schütte
1965a, 1965b): Predicativism is a conception of the natural numbers

and sets thereof motivated by the vicious circle principle in the
sense of Poincaré and Russell, according to which sets of natural
numbers are acceptable insofar as they can be defined without

quantifying over totalities to which they belong. This philosophical
position is captured precisely by the formal system RA<G0

of rami-
fied analysis up to the Feferman-Schütte ordinal G0.

Before proceeding further, however, let us consider an objection to
the very idea of epistemic stability. On one influential view (Kreisel

1960a, 1965; Feferman 1991), anyone who rationally endorses a theory
T is thereby implicitly committed to extending it via reflection

10 Plausibly neither finitists nor predicativists could even in principle recognize the truth of

a foundational equivalence thesis characterizing their informal stances. As Hellman (2004,

p. 299) puts it, any attempt to characterize predicativity ‘implicitly transcends predicativity

in the very formulation of the limitative theses’, and arguably the same goes for finitism.

However, it is not clear whether these considerations can be turned into a completely general

argument to the effect that proponents of a foundational stance cannot accept a foundational

equivalence thesis characterizing it.

10 Beau Madison Mount and Daniel Waxman
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principles—at a minimum, the local reflection principle
RfnðTÞ;BewTðpFqÞTF, stating that if F is provable in T, then F.11

If so, a rational agent who accepts T ought to accept
Tþ RfnðTÞ;Tþ RfnðTÞ þ RfnðTþ RfnðTÞÞ, and so on—each of
these theories strictly stronger than the last. If this view is correct,

there can be no such thing as an epistemically stable theory.
There are three points to make in response. First, the claim that

acceptance of a theory incurs implicit commitment to reflection can

be challenged. As Dean (2015, p. 40) has noted, in some cases adding
reflection is equivalent to adding new instances of induction; thus, if
an informal foundational stance motivates a theory with restricted
induction, imposing reflection would be question-begging against it.

As this response is not directly relevant to the theories we shall con-
sider, we do not develop it further.

Second, as noted above, foundational equivalence theses ordinarily

characterize positions externally. The sense in which RA<G0
is sup-

posed to capture predicativism is not that the predicativist ought to
adopt it as her overall theory; rather, each of its theorems could be

accepted by the predicativist, and conversely every claim accepted by
the predicativist can be proved within it. Thus, even if anyone who
explicitly adopted RA<G0

were obligated to accept additional claims,

this obligation would not apply to the predicativist herself.
Third, there is still a useful notion of stability modulo reflective

closure that classifies theories in a way that carves at the joints. The
proponent of strong implicit commitment should accept that, even if

there are no fully stable theories, at least some theories are privileged
as epistemically appropriate starting points for reflection. Proponents
of strong implicit commitment are thus invited to understand ‘epi-

stemic stability’, in what follows, as ‘epistemic stability modulo re-
flective closure’.12

We conclude that, from the philosophical perspective, theories of

foundational interest must be epistemically stable. If the foundational

11 For this constraint to apply, the theory must be strong enough to formulate the reflection

principle or the agent must accept an additional syntax theory capable of formulating it. Many

versions of reflection principles have been discussed: another is the uniform reflection prin-

ciple RFNðTÞ;;xðBewTðpFð*xÞqÞTFðxÞ). Other candidates for implicit commitments include

the consistency statement ConðTÞ or the Gödel sentence GT.

12 As a referee points out, it is not entirely clear how to give a precise formal definition of

‘reflective closure’, since subtle issues concerning ordinal notations arise (Feferman 1962). For

our purposes, all we need is the idea that some theories serve as starting points for reflection,

however exactly this is cashed out.
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equivalence theses above are correct, then—as mathematical theories
taken in isolation—Z2;PA;PRA, and RA<G0

are internally coherent

frameworks worthy of study.
However, taking the disentanglement programme seriously requires

considering not just mathematical theories in isolation, but combina-

tions of base and syntax theories. In such a setting, the possibility
arises that even if some mathematical theory and theory of syntax
are epistemically stable when taken in isolation, they are nevertheless

jointly unstable when paired with one another. We contend that this
possibility is realized; indeed, it affects the main disentangled theories
proposed in the literature.

3. Joint Epistemic Stability

How might a collection of individually stable theories fail to be jointly
stable? If the theories to be combined were, for example, an arithmet-

ical theory and a physical theory of electromagnetism, it is hard to see
how joint instability could arise. But the natural numbers and syn-
tactic objects are more intimately related. Even though disentangle-

ment begins from the principle that syntax and arithmetic are distinct,
the nature of the two domains places constraints on their interaction.

3.1 The Hilbert-Parsons Principle

We first consider local joint instability—the instability that arises when
theories T1 and T2 are combined, but T1 (possibly together with back-
ground commitments) motivates a theory T0

2
strictly stronger than T2.

The primary source of local joint instability we will discuss arises
from the links between arithmetic and syntax. The idea can be moti-
vated by considering the following passage from Hilbert:

[T]he objects [Gegenstände] of number theory are for me—in dir-

ect contrast to Dedekind and Frege—the signs themselves, whose
shape [Gestalt] can be generally and certainly recognized by us—
independently of space and time [. . .] The solid philosophical at-
titude that I think is required [. . .] is this: In the beginning was the

sign. (Hilbert 1922, p. 163/202; cf. Hilbert and Bernays 1934–39,
vol. I, p. 20)

Here Hilbert defends a very strong claim: the natural numbers simply
are syntactic types. Few others have found this metaphysical thesis

appealing. But it is worth asking why Hilbert found it attractive in the

12 Beau Madison Mount and Daniel Waxman

Mind, Vol. 00 . 0 . 2020 � Mind Association 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/advance-article/doi/10.1093/m
ind/fzaa034/6129643 by East Asian Institute Library, N

ational U
niversity of Singapore user on 07 February 2021



first place. A plausible explanation is that, even if Hilbert was mis-
taken in diagnosing the connection between syntax and arithmetic as

arising from a syntactic metaphysics of number, the link nonetheless
has epistemic purchase.

Further insight can be found in the work of Charles Parsons, who

holds that we can learn arithmetical facts by consideration of syntax.
He focuses on a simple case of syntax, inspired by Hilbert, based on an
alphabet with a stroke | as its sole symbol. First, we learn about string-

types (which he describes (2008, p. 33) as ‘quasi-concrete’ objects:
abstract but ‘determined by their concrete embodiments’) by literally
perceiving them:

[W]e stand in a perceptual relation to the expressions of this simple
formal language. The same reasons for talking of perception of

expression-types with reference to natural language arise also
with reference to this language. (Parsons 2008, pp. 159–60)

Second, although we have no comparable perception of the natural
numbers themselves, we can learn about them indirectly, using this

perceptual knowledge of facts about stroke-types:

[T]he system of strings [. . .] is still, in some sense, an intuitive
model of arithmetic. [. . .] [I]t consists of objects of intuition in
the sense that there is actual intuition of strings sufficiently early in
the sequence and it is possible to draw some conclusions about an

arbitrary string intuitively. [. . .] We can easily satisfy ourselves that
it satisfies the Dedekind-Peano axioms. If we understand the strings
as what is obtained from | by iterated application of the operation

of adjoining one more, then it should be as evident that induction
holds for them as that it holds for any structure characterized in
this particular way. (Parsons 2008, p. 235)

We need not follow the details of Parsons’s account; what is im-

portant is simply that there is a structural similarity between string-
types and natural numbers, leading to the possibility of learning facts
about arithmetic by reflecting on facts about syntactic objects. In

more detail, the process works as follows. Suppose we have a relatively
clear apprehension of the string-types of our language (whether
explained in Parsons’s fashion or otherwise). Although any realistic
language will be based on an alphabet with many characters, we can

restrict attention to the strings formed from repeated adjunction of a
single arbitrarily chosen symbol (which will play the same role as
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Hilbert’s stroke |). We can apprehend that there is a map from string-
types of this kind to the natural numbers (taking the null string to zero,

adjunction by the given symbol to successorship, and so on). Because
we are in a position to see that this map is structure-preserving, we can
learn about the structure of the natural numbers by considering the

structure of string-types. Furthermore, we can semantically ascend: the
map induces a translation between sentences in the single-symbol frag-
ment of the language of syntax and (at least some) sentences in the

language of arithmetic. We know that a translatable arithmetical sen-
tence is true if and only if its syntactic translation is, enabling us to
reconceptualize arithmetical claims as true of syntactic objects.

This yields what we term the Hilbert–Parsons Principle:

HILBERT–PARSONS PRINCIPLE (HPP): We can learn arithmetical claims

by learning syntactic claims, an ability which is explained by the
fact that arithmetic can be reconceptualized as true of strings, by
way of a natural mapping between (a subclass of) syntactic and

arithmetical objects.

3.2 From HPP to Interpretability
In HPP, ‘reconceptualizing as true’ is an informal notion, meaning

merely that we can see that certain arithmetical claims are true be-
cause they can be reconstrued as true claims about syntactic objects.
But this informal thesis motivates a formal proof-theoretic claim—
that syntax should be relatively interpretable within arithmetic—as

follows.13

Suppose the pair Tb þ Ts is epistemically stable. We have at least a
partial grasp of the intended models A and S of arithmetical and

syntactic objects. There is a subtheory T0s of Ts (the theory of the null
string and finite sequences of some arbitrary symbol, with concaten-
ation and perhaps other basic syntactic operations) which we can

reinterpret, along the lines set out above, through a mapping m :
STA taking the null string to zero and so on. Because we have a
definable arithmetical operation corresponding to every primitive

syntactic operation on the one-symbol fragment, there is a function
† from formulas of LT0s

to formulas of LTb
. (This function need not

13 The interpretability of T1 within T2 means roughly that there is a function from the

sentences in the language of T1 to sentences in the language of T2 such that theorems are

mapped to theorems and the logical structure of complex sentences is preserved, modulo

quantifier relativization (Lindström 2003, pp. 96–98).

14 Beau Madison Mount and Daniel Waxman
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be assumed to be surjective: for all we know, there may be arithmetical
primitives without definable syntactic correlates.)

One who works within the appropriate foundational stance is jus-
tified in believing all the theorems of T0s and believing that † preserves
truth. But if † took a theorem F of T0s to a nontheorem of Tb, then

Tb [ fF†g would be a proper extension of Tb justified by the com-
bined theory, which is ruled out by epistemic stability.

So if T0s ‘F, then Tb ‘F†. And since † clearly respects connectives

and identity, this means that † is a relative interpretation of T0s in Tb.
We thus have the following:

(Interpretability Constraint) If Tb þ Ts is jointly epistemically sta-
ble, then the one-symbol fragment T0s of Ts is relatively interpret-
able in Tb.14

3.3 The Interpretability Constraint and Local Joint Instability
The Interpretability Constraint affects some theories discussed in the
literature. As noted, Heck focusses on ½IS1�CT

s , i.e. IS1 as a syntax

theory with compositional truth axioms, which they think can be
added to an arbitrary base theory to yield an appealing theory of
syntax and truth built upon it. However, we doubt that this invariably

results in a stable theory. Notice that if Tb þ ½IS1�CT
s is stable, presum-

ably so too must be the truth-free theory Tb þ ½IS1�s. But, at least in
some cases, this will run afoul of the Interpretability Constraint.
Suppose ½IS1�s is added to a relatively weak base theory incapable of

interpreting it, such as Qb or ½ID0�b (Hájek and Pudlak 1993, p. 391).
Given the Interpretability Constraint, this results in an unstable
combination.

14 The Interpretability Constraint should be distinguished from:

(Reverse Interpretability Constraint) If Tb þ Ts is jointly epistemically stable, then

Tb is relatively interpretable in the one-symbol fragment T0s of Ts .

We remain neutral about the Reverse Interpretability Constraint here. Since, as men-

tioned above, † need not be surjective, it is not forced upon us by the HPP. There are weak

systems of syntax—corresponding to Samuel Buss’s S1

2
(Buss 1986) or to PRA—which can

perhaps be given independent combinatorial motivations. (See Nicolai 2016, pp. 97–103 and

114–17, for relevant results and discussion.) Since the HPP need not represent our only mode

of insight into the structure of the natural numbers, perhaps such a system could be stably

combined with a stronger arithmetical theory that had a different kind of justification.

Thanks to a referee for pressing us to clarify here.
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We now turn to the theories considered by Leigh and Nicolai. It is
plausible that PAb þ PAs is jointly stable: given Isaacson’s Thesis, PAb

is individually stable, and a syntactic analogue of Isaacson’s Thesis can
be formulated according to which PAs is individually stable too. Since
PAb and PAs are synonymous, they are mutually interpretable, and

thus the Interpretability Constraint reveals no impediment to their
joint stability.

As appealing as PAb þ PAs may be, it is inadequate to formalize

informal metamathematical practice, since it contains no truth predi-
cate, whereas informal metamathematics considers principles (e.g.
global reflection) essentially involving the notion of truth. We are
thus led to consider the theory’s natural truth-theoretic extension,

PAb þ PACT
s , resulting from the addition of compositional truth

axioms.
The problem, however, is that adding compositional truth yields a

failure of the Interpretability Constraint. Since PAb þ PACT
s proves

ConsðPAbÞ but does not prove ConbðPAbÞ, the PAb fragment on its
own cannot interpret the restriction of PACT

s to the syntax language.

Thus, the Interpretability Constraint diagnoses the theory as
unstable.15

3.4 The Coding Axioms and Structural Joint Instability
Finally, we consider Leigh and Nicolai’s preferred theory
PAb þ PACT

s þ CodAx. Adding CodAx to the combined theory brings
the strength of the base theory up to that of the syntax theory; there is

thus no mismatch of interpretability strength. But the kind of local
joint instability addressed by the Interpretability Constraint is not the
only possible cause of joint instability. We will argue that Leigh and

Nicolai’s treatment of the coding axioms manifests what we will call
structural joint instability. Abstractly characterized, this arises for a
pair of theories T1 and T2 when the only foundational stances which

motivate T1 þ T2 themselves motivate some ðT1 þ T2Þ0 strictly stron-
ger than T1 þ T2.

We believe this kind of instability afflicts Leigh and Nicolai’s theory
PAb þ PACT

s þ CodAx. On our view, any informal stance motivating

15 Notice that the objection just made is distinct from the one raised by Halbach (2014,

p. 306) and discussed in §2. Our objection is not that PAb þ PACT
s is unnatural, or that it is

unfaithful as a codification of our metamathematical practice; rather, our objection is that its

syntactic component outstrips its arithmetical component, and thus, given the Interpretability

Constraint, it is an epistemically unstable combination.

16 Beau Madison Mount and Daniel Waxman
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CodAx would also motivate theories stronger than PAb þ PACT
s . In

particular, the only reasonable candidates for stances motivating

CodAx are higher-order in Isaacson’s sense; but any such stance itself
motivates stronger theories than PAb and PAs.

To see this, consider how the coding axioms might be philosoph-

ically motivated. We see three prima facie possibilities: (i) on their
own, independently of PAb þ PACT

s ; (ii) on the basis of the concep-
tion of truth motivating PACT

s ; or (iii) on the basis of ‘higher-order’

facts about the natural number structure (in Isaacson’s sense) exceed-
ing what is captured by the first-order theories PAb and PAs.

We argue that only (iii) is plausible. It would be somewhat desper-
ate to argue that CodAx possesses a motivation independently of some

underlying conception of arithmetic. The coding axioms assert that
there is a particular function coding up syntax in the base theory. But
this is the kind of claim that, if true, cries out for explanation and

cannot be taken as a brute fact. Nor can truth-theoretic considerations
suffice. As already pointed out, such considerations can motivate
PAb þ PACT

s itself, but there is no way to use them to extend that

theory. The addition of CodAx to PAb þ PACT
s results in a non-

conservative extension, so it requires some additional motivation.
In contrast, ‘higher-order’ considerations in Isaacson’s sense seem

perfectly suited for the job. Facts about the coding between arithmetic
and syntax are, for Isaacson, paradigmatic examples of higher-order
content:

The key technique of Gödel’s proof is the use of coding, the coding
of syntactic relations and properties by properties and relations of

natural numbers. At least in the case of Gödel sentences [. . .] the
understanding of these sentences rests crucially on understanding
this coding and our grasp of the situation being coded. The phe-

nomenon of coding reveals fixed links between two situations or
facts, one in the structure of arithmetic, the other in the realm of
syntax of a formal system. These facts, and the link between them,

are revealed by the description of the coding, but their existence is
not dependent on being described. (Isaacson 1987, pp. 158–59)

Thus, assuming Isaacson’s Thesis and its syntactic analogue, the cod-
ing axioms are alien to the conception embodied by PAb þ PAs or
even PAb þ PACT

s . Their justification relies not just on a ‘local’ appre-

ciation of the individual structure of arithmetical or syntactic objects,
but on the ‘link between them’—the fact that the two domains are
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isomorphic. But reasoning about isomorphisms in general requires
resources that transcend PA, by allowing us to talk about structures

rather than just individual numbers. A theory capable of this will
involve second-order quantification, some degree of set theory, or
something else ‘higher-order’ in Isaacson’s sense—and will thus tran-

scend PAb and PAs. Therefore, the stance behind CodAx leads beyond
the theories to which Leigh and Nicolai join it—rendering PAb þ
PACT

s þ CodAx subject to structural joint instability.

So we are led to ask: which conceptions of the natural numbers and
syntax are rich enough to underwrite such claims of structural simi-
larity, and which theories are motivated by these conceptions?
Dedekind’s Thesis, the claim that a fuller conception of the natural

numbers is captured by Z2, provides a natural answer. Again, there is
an obvious syntactic analogue of Dedekind’s Thesis leading to a par-
allel claim for the syntactic domain.

We thus consider the theory that results from taking Z2 as both the
base theory and the syntax theory (interpreted as a theory of the
natural numbers in the former case, and a one-symbol syntax theory

in the latter). We call this theory DZ2, for ‘double’ Z2. Unlike
PAb þ PACT

s þ CodAx, it and its truth-theoretical extension DZ2CT

are epistemically stable. Moreover, they have the resources to demon-

strate isomorphism between the two domains with no need for add-
itional assumptions; the coding axioms are directly justified and need
not be added in by hand.

4. Double Second-Order Arithmetic

4.1 Dedekind’s Thesis and DZ2

We now set out DZ2. We assume a standard second-order deductive

system such as in Shapiro (1991, pp. 65–69), with each instance of the
comprehension schema:

(CA) 'Xn;x1 . . . xnðXnx1 � � � xn �FÞ where Xn is not free in F.

We allow function constants but no quantification over functions.
The signature of DZ2 is fNb;Ns; 0b; 0s; Sb; Ssg. Its proper axioms
are, for j 2 fb; sg:
ðA1jÞ Nj0j

ðA2jÞ ;xðNjxTNjðSjxÞÞ
ðA3jÞ ;xðNjxTSjxÞ0jÞ

18 Beau Madison Mount and Daniel Waxman
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ðA4jÞ ;x;yðNjx ^ NjyTðSjx ¼ SjyTx ¼ yÞÞ
ðA5jÞ ;XðX0j ^ ;xðNjxTðXxTXSjxÞÞT;xðNjxTXxÞÞ
(A6) ;x;yðNbx ^ NsyTxÞyÞ

On the intended interpretation, 0b; Sb0b; SbSb0b; . . . denote the natural

numbers 0, 1, 2, and so on; 0s; Ss0s; SsSs0s; . . . denote the null string,
the string |, the string jj, and so on, where | is some fixed symbol.

Note that this is a one-sorted theory, unlike Leigh and Nicolai’s

PAb þ PAs. In particular, the second-order domain includes mixed
collections (containing both mathematical and syntactic objects).

We write LZ2
b

and LZ2
s

for the languages with signatures

fNb; 0b; Sbg and fNs; 0s; Ssg respectively, and we write Z2

b and Z2

s for
the fragments of DZ2 in LZ2

b
and LZ2

s
. Given a formula F, we write

FðbÞ (resp. FðsÞ) for the result of relabelling the non-logical compo-
nents with their b-analogues (resp. s-analogues).

4.2 Consistency and the Transfer Theorem
Regarding the stability of DZ2, the main result of interest is the

following:16

Theorem (Transfer). DZ2 ‘FðbÞ�FðsÞ where F is a sentence of
LDZ2 .

We will use this result to argue that DZ2 is a jointly stable theory.
We considered three ways in which a disentangled theory can fail to
be stable: failures of (i) individual stability, (ii) local joint stability,

and (iii) structural joint stability. How does DZ2 fare on these
grounds?

Given Dedekind’s Thesis and its syntactic analogue, the individual
components of DZ2 are stable. The two kinds of joint instability are

more interesting.
The primary examples of local joint instability discussed so far have

arisen from the Hilbert-Parsons Principle, when the syntactic theory is

not relatively interpretable within the arithmetical base theory. But for
DZ2, clearly no such worries arise. The Transfer Theorem shows that
the syntax theory can be interpreted within the base theory via the

natural mapping.
It is hard to see how joint instability could arise on other grounds.

The Transfer Theorem also provides an interpretation in the other
direction, and the equivalence it guarantees (for sentences in LZ2

b
and

16 For a proof, see the appendix.
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LZ2
s
) will still hold if we add new axioms: the resulting system will

never prove a sentence in LZ2
b

without proving the corresponding

sentence in LZ2
s

and vice versa.
Turning to structural joint instability, the key example we consid-

ered was the addition of a truth theory and coding axioms to Leigh

and Nicolai’s PAb þ PAs. What is the analogous situation concerning
DZ2? We know from the Transfer Theorem that no interpretability
failure can arise, but it remains at least possible that the extended

theory might rely on an informal conception motivating a stronger
base theory than Z2

b. In the case of Leigh and Nicolai’s theory the
problems arose not from the truth theory but from the coding axioms,
which embody a conception of arithmetic and syntax (and the struc-

tural relations between them) going beyond the Peano-Dedekind
axioms.

To show that no such issue arises here, we introduce a truth theory,

DZ2CT , extending DZ2 with compositional truth clauses for a second-
order language. We demonstrate (in the appendix) that it is capable of
proving the syntactic consistency statement for the base theory and

thus, by the Transfer Theorem, the coded arithmetic consistency state-
ment for the base theory in the base language. Thus DZ2CT captures all
the informal metamathematical reasoning we expect from adding a

truth theory. Unlike Leigh and Nicolai’s system, it does so autono-
mously, appealing to no supplemental axioms—such as CodAx—
which require motivation going beyond the commitments of DZ2

and the truth theory. The spectre of structural joint instability is

thus dispelled.
We now formally state DZ2CT . First fix a coding pq from the

expressions of LZ2
b

to the syntactic objects. In order to make dealing

with assignments tractable, we take advantage of the fact that pairing
is definable in DZ2. For each n-ary higher-order entity, we can define
a function fn taking it to a proxy monadic second-order entity—i.e. a

subset of the domain. We can also define a function g allowing us to
simulate first-order quantification using a second-order entity by lift-
ing each individual to its singleton. We thus have a denumerable
collection hg1; g2; . . . ; f 1

1
; f 1

2
; . . . ; f 2

1
; f 2

2
; . . .i as proxy for the values on

an assignment of the variables x1; x2; . . . ;X 1

1
;X 1

2
; . . . ;X2

1
;X2

2
; . . . (which

are in turn represented in our syntax theory by terms we write as
v1; v2; . . . ;V1

1
;V1

2
; . . . ;V2

1
;V2

2
; . . .).

We can use additional proxy functions to simulate a countable
collection of subsets of an infinite domain by a single subset. In this
way we can use a monadic second-order entity as a proxy variable
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assignment, from which the value of any given variable can be
extracted (by a family of definable functions). We use a, b to range

over assignments (in this proxy sense of ‘assignment’), and we write
vvba (resp. vVba) for the value of a given first- or second-order variable
on a. We write a&

v
b to indicate that a differs from b only in the value

assigned to v; a½vvb:¼x� for the assignment differing from a only by
assigning x to v, and a½v1=v2� for the assignment differing from a
only by exchanging the values of v1 and v2; all of these notations

are extended in the obvious way to higher-order variables and sequen-
ces of variables. Further, as a matter of convenience, we extend vba to
all terms of the language.

Finally, we introduce a new primitive cross-type predicate Sat

which takes a monadic second-order entity and a syntactic entity:
on the intended interpretation, Sataf holds if and only if f, the coded
syntactic object, denotes a formula of the base language satisfied on

assignment a.17

To obtain DZ2CT , we add the following truth-theoretic axioms to
DZ2:

(T1) ;a;t1;t2ðSataðt1¼_ t2Þ� vt1ba ¼ vt2baÞ
(T2) ;a;tðSataN*bt�NbvtbaÞ
(T3) ;a;Vn;t1 � � �;tnðSataVnt1 � � � tn � vVnbavt1ba � � � vtnbaÞ
(T4) ;a;fðSata ‰

_
f�‰SatafÞ

(T5) ;a;f;wðSataðf _̂
wÞ� Sataf ^ SatawÞ

(T6) ;a;f;vðSata ;* vf� ð;b&
v
aÞSatbfÞ

(T7) ;a;f;VnðSata ;* Vnf� ð;b&
Vn

aÞSatbfÞ
Conventions for the use of ;t and similar expressions correspond to
the obvious disentangled analogues of those introduced for PACT .

Note that (T3) and (T7) are schematic in n, as is appropriate for a
polyadic theory.18

The main result governing DZ2CT is that it proves the syntactic

consistency sentence for its base theory:

17 The vba expression is shorthand for a family of formulas picking out entities of various

types, but in practice this will cause no confusion. To avoid notational clutter, we treat Sat as

incorporating a tacit application operation T; t1; . . . ; tn 7! pTt1 � � � tnq in the atomic case.

18 In the Appendix, for technical purposes, we work with a simpler theory which obviates

the need for this device.
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Theorem (Non-Conservativeness). DZ2CT ‘ConsðZ2
bÞ.

Thus, by the Transfer Theorem, DZ2CT ‘ConbðZ2
bÞ.

For these reasons, DZ2 and its truth-theoretic extension DZ2CT are
philosophically appealing theories within which to carry out the dis-
entanglement programme. As the Non-Conservativeness Theorem

demonstrates, they are sufficient to capture much informal meta-
mathematical reasoning, with their syntax and base theories naturally
moving in step. As we have argued, the individual components of

these theories are well-motivated; furthermore, the results just men-
tioned show that, unlike their main disentangled competitors, no
obvious source of joint instability arises from their interaction.

5. Concluding Discussion

In this final section we consider some objections and some potential
implications of our results for Dedekind’s Thesis, Isaacson’s Thesis,
and deflationism.

First, our results make use of second-order arithmetic. It might be
objected, therefore, that their interest is limited. The standard seman-
tics for second-order theories is given within set theory: the second-

order quantifiers are taken to range over the full powerset of the
domain. In our case, the intended domain is countably infinite. But,
according to the objection, it is problematic to suppose that we have a
determinate conception of second-order quantification, since the deter-

minacy of the powerset operation is dubious. Of course, set-theoretic
realists will find an appeal to the powerset of N unproblematic; there
are, however, many positions in the philosophy of mathematics—pred-

icativism, strong set-theoretic pluralism, and so forth—on which deter-
minately quantifying over every subset of N is impossible. Has our
argument any interest for proponents of those positions?

We maintain that it has. We have two main responses to the ob-
jection. First, nothing in our treatment of second-order logic made
essential use of set theory. There is no reason why we could not work
within a higher-order metalanguage throughout. Second, and more

fundamentally, there is no sense in which we presuppose the deter-
minacy of second-order logic. All of the results we give are theorems of
the relevant second-order theories, not merely semantic consequences.

They are thus valid not only on all standard interpretations of the
second-order quantifiers but also on all Henkin interpretations
(where the quantifiers range over some, possibly proper, subset of
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the full powerset of the domain); unlike the standard semantics, there
exist sound and complete proof procedures for Henkin semantics.

Any remaining scruples about second-order logic can be assuaged
by viewing the second-order theories as, in effect, two-sorted first-
order theories, along the lines of Simpson (2009).

In addition, there is another possible worry about the status of
second-order resources in DZ2. Our demonstration of the Transfer
Theorem requires that second-order quantifiers range over higher-

order entities whose extensions are mixed in that they include both
mathematical and syntactic objects. Is this compatible with the basic
idea behind disentanglement? One of the central motivations of dis-
entanglement in the first-order setting, after all, was to separate out

syntactic from purely mathematical instances of the induction
schema. In the second-order setting induction is an axiom, but we
have the full panoply of syntactic, mathematical, and mixed instances

of comprehension. Is it not unsurprising that ConbðZ2
bÞ is provable?

After all, ConbðPAbÞ becomes provable in Leigh and Nicolai’s system
(2013, p. 627) once the induction schema is fully extended.

In our view, there is an important disanalogy between the induction
schema in PAb and the comprehension schema in DZ2. In a second-
order setting, (CA) is a logical principle. (CA) is equivalent to a rule of

substitution, roughly according to which arbitrary formulas can be
substituted for free second-order variables in demonstrated claims.19

In contrast, in the first-order framework, mathematical induction is
contentual, and adding new instances adds new subject matter: as

Leigh and Nicolai note, extending induction ‘is somewhat unnatural,
at least from our point of view, as the interaction between
“mathematical” and “syntactic” schemas [. . .] was exactly what the

setting with “disentangled syntax” wanted to avoid’ (2013, p. 628).
What are the implications of our discussion for Isaacson’s and

Dedekind’s Theses? In our view, it lends support to both. Bridge prin-

ciples such as Leigh and Nicolai’s coding axioms are not derivable
within PAb þ PAs. Isaacson’s Thesis offers a satisfying and elegant ex-
planation of this fact: the coding axioms are paradigmatically ‘higher-
order’ propositions, whose justification relies on our appreciation of a

structural similiarity between arithmetic and syntax. We take it that this
lends some abductive support to Isaacson’s Thesis. It is also a mark in
favour of Dedekind’s Thesis that the coding axioms are derivable within

19 See Boolos (1985, pp. 334–38) for a precise statement of the rule of substitution and proof

of the equivalence.
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DZ2. To be sure, it cannot be the case that Dedekind’s Thesis requires
everything true in (our fullest conception of) the natural number struc-

ture to be provable from Z2, for obvious Gödelian reasons. But in the
case of DZ2, the Transfer Principle does not represent any increase in
consistency strength: if it were naturally justified by the conception

behind DZ2 but not provable from it, this would be a lacuna not
directly explicable on Gödelian grounds, suggesting that DZ2 in fact
failed to capture a natural conception of natural numbers and syntax.

Let us close by briefly discussing the impact of our discussion on
deflationism. To recall the main issue: deflationists are, allegedly, com-
mitted to the conservativeness of truth and syntax over mathematical
base theories. Given that it is philosophically natural to move to disen-

tangled theories, it is interesting to consider the implications for defla-
tionism. At first, PAb þ PACT

s might appear to be an appealing
disentangled theory to adopt, since it is conservative over PAb.

However, Leigh and Nicolai argue, for reasons discussed in §2, that
the theory is not so appealing after all, because it ‘cannot capture our
common metatheoretic practice’ (2013, p. 635). In its place, they tenta-

tively propose PAb þ PACT
s þ CodAx, which they think better captures

metatheoretic practice. However, this theory is non-conservative over
PAb, and thus once again inhospitable to the deflationist. Our discussion

takes the dialectic one stage further: as we argued in §4.5, PAb þ PACT
s þ

CodAx exhibits structural joint instability, and for that reason should
not be accepted by the deflationist (or, for that matter, anyone else).

In our discussion, we introduced DZ2CT , which we advocate as an

epistemically stable alternative. But this theory is not friendly to the
deflationist either. For as we showed in §4, DZ2CT is a non-conservative
extension over the truth-free base theory. This result puts some pres-

sure on deflationists: to the extent that a conservativeness constraint
holds, it is incumbent upon them to propose an alternative disen-
tangled truth theory, suitable for metamathematical reasoning, which

is both epistemically stable and conservative over its base theory.
Whether this is a genuine problem for deflationists depends on a

final set of issues, which we merely gesture at for further investigation.
The conservativeness constraint to which deflationism is putatively

committed can be understood in two different ways:

Weak Conservativeness: Adding a theory of truth to our best total
truth-free theory must result in a conservative extension;

Strong Conservativeness: Adding a theory of truth to any natural

fragment of our best total truth-free theory (including, presumably,
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our best total theory of natural numbers and syntax) must result in
a conservative extension.

Much of the literature has presupposed that the relevant constraint is

something like Strong Conservativeness: otherwise, theories of arith-
metical truth would be irrelevant, since arithmetic has no reasonable
claim to being our best total mathematical theory, let alone our best

total theory. If Strong Conservativeness holds, then our arguments
above show that the disentanglement programme leaves deflationism
in bad shape. But if, by contrast, Weak Conservativeness is the best

way of understanding the constraint, then many issues remain to be
explored. In particular: a full assessment of the conservativeness ob-
jection would require an investigation of adding a disentangled theory
of truth and syntax to theories—for instance, various formulations of

set theory—which have a plausible claim to being our best total math-
ematical theories.20 Whether this provides a means of escape for the
deflationist, however, is a question that we cannot pursue here.21

Appendix

1. Proof of the Transfer Theorem

Theorem (Transfer). DZ2 ‘FðbÞ�FðsÞ for F 2 SentðLDZ2Þ.

The Transfer Theorem generalizes Leigh and Nicolai’s (2013, p. 631)

Corollary 3.17.22 An immediate implication, appealed to in §4, is that
DZ2 ‘ ConbðZ2

bÞ�ConsðZ2

bÞ.
In order to prove the Transfer Theorem, we draw on a result from

Väänänen and Wang (2015, p. 124). Second-order arithmetic is intern-
ally categorical, i.e. it proves that any two Z2-structures are

20 See Fujimoto (2019, pp. 1060–68) for recent work in this direction.

21 Thanks to Kentaro Fujimoto, Carlo Nicolai, Lavinia Picollo, Oliver Tatton-Brown, Jared

Warren, Philip Welch, Jack Woods, Jiji Zhang, audiences at New College, Oxford and the

Humboldt-Universität Berlin, two anonymous referees for Mind, and, above all, Volker

Halbach.

22 In our notation, Leigh and Nicolai establish that PAb þ PAs þ CodAx ‘FðbÞ�FðsÞ

whenever F is a first-order sentence in the language LPAbþPAs
. Our generalization applies

to all sentences, not only first-order sentences. This is more than is required to establish

Transfer of Consistency since, even though Z2

b is a second-order theory, ConbðZ2

bÞ is P0
1

in

DZ2; the extension to second-order sentences does not alter the structure of the proof, but is

nevertheless desirable given that we work in a second-order setting.
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isomorphic, as are any Z2

b-structure and any Z2

s -structure (since the
axioms of Z2

b and Z2

s differ only by a relabelling of constants):23

Theorem (Internal Categoricity) (Väänänen and Wang).
DZ2 ‘'f f : hNs; 0s; SsiT

iso
hNb; 0b; Sbi:

We will appeal to the fact that, in the course of their proof,

Väänänen and Wang provide a recipe for defining a function h which
provably satisfies the analogues of the coding axioms (CodAx1)–
(CodAx3):

(IA1) hð0sÞ ¼ 0b;

(IA2) ;x;yðhðxÞ ¼ yThðSsðxÞÞ ¼ SbðhðxÞÞÞ:
No analogue of (CodAx3) is required, for functionality is built in by

definition.24

Henceforth, for convenience, we use h both for the function itself
and as a metalinguistic abbreviation for a second-order term in LDZ2

denoting it; bhðAÞ functions similarly for fhðxÞ : x 2 Ag.
We turn now to the proof of the Transfer Theorem:
Theorem (Transfer). DZ2 ‘FðbÞ�FðsÞ for F 2 SentðLDZ2Þ.
Proof. We first establish the more general schematic claim:

DZ2 ‘;X1 � � �;Xn;Y1 � � �;Yn;x1 � � �;xm;y1 � � �;ym

ðY1 ¼ bhðX1Þ ^ � � � ^ Yn ¼ bhðXnÞ ^ y ¼ hðx1Þ ^ � � � ^ ym ¼ hðxmÞT
ðFðbÞðX1; . . . ;Xn; x1; . . . xmÞ�FðsÞðY1; . . . ;Yn; y1; . . . ymÞÞÞ

for F a formula of LDZ2 . We abbreviate this as DZ2 ‘NðFðbÞð~X ;~xÞ;
FðsÞð~Y ;~yÞÞ or simply DZ2 ‘NðFÞ.

We show this by a metatheoretic induction on the complexity of F,

adapting the proof strategy of Leigh and Nicolai’s (2013, p. 631)
Theorem 3.16. In the base case, where F is atomic, DZ2 ‘NðFÞ follows
directly from (IA1)–(IA2) and the definition of the relabelling. The

23 We abuse notation somewhat in stating the theorem: in our second-order language, all

functions are defined on the whole domain, but the behaviour of f on anything other than the

extension of Ns is irrelevant. Likewise, we do not care about the behaviour of Sb or Ss outside

the extension of Nb or Ns, respectively. For a general discussion of internal categoricity, see

Button and Walsh (2018, pp. 223–50). In fact, the proof can be carried out in the much weaker

system WKL0; see Simpson and Yokoyama (2013). We do not think that this detracts from the

interest of Z2 and DZ2: in our view, weak frameworks such as WKL0 lack convincing philo-

sophical motivations and face serious internal stability problems.

24 All the proof requires is that h be defined on Ns ; we take the function to be total, with

arbitrary values elsewhere.
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induction clauses for the sentential connectives are trivial. Now con-
sider F ¼ ;zCðzÞ. If z is one of f~xg [ f~yg, then it is bound, not free,

in FðbÞ and FðsÞ, and the satisfaction of the biconditional
FðbÞðX1; . . . ;Xn; x1; . . . xmÞ�FðsÞðY1; . . . ;Yn; y1; . . . ymÞ does not de-
pend on its value, but is already guaranteed by the induction hypoth-

esis. So, without loss of generality, we can assume z is distinct from
each of the xi and yi. By the induction hypothesis, we have
DZ2 ‘NðCðbÞð~X ;~x ; zÞ;CðsÞð~Y ;~y ; zÞÞ. But

NðCðbÞð~X ;~x ; zÞ;CðsÞð~Y ;~y ; zÞÞTNð;zCðbÞð~X ;~xÞ;;zCðsÞð~Y ;~yÞÞ

follows from logic alone since z is free in C; so
DZ2 ‘Nð;zCðbÞð~X ;~xÞ;;zCðsÞð~Y ;~yÞÞ, i.e. DZ2 ‘NðFÞ. A precisely
analogous argument applies when F ¼ ;ZnCðZnÞ. .

2. Proof of the Non-Conservativeness Theorem
Here we show that DZ2CT ‘ConbðZ±2

b Þ. It follows, via results in §4,

that DZ2CT also proves ConsðZ2

bÞ;ConbðZ2

s Þ, and ConsðZ2

s Þ. The fact
that DZ2CT proves the consistency of the base and syntax theories is
evidence in favour of its naturalness as a disentangled truth-theoretic

framework.
It suffices to consider ordinary second-order arithmetic with the

(standard, entangled) compositional truth axioms (Z2CT ) and the

corresponding monadic second-order system, bZ
2CT

. The use of bZ
2CT

simplifies the proofs, but no generality is lost, since polyadic second-
order quantification can be coded via a pairing function. Because this

coding is primitive recursive, ConðZ2Þ�ConðbZ2Þ will be provable in

a very weak base theory. So if bZ
2CT ‘ConðbZ2Þ then bZ

2CT ‘ConðZ2Þ.
But since bZ

2CT
is a subtheory of Z2CT ;Z2CT ‘ConðZ2Þ if

bZ
2CT ‘ConðbZ2Þ. Furthermore, since Z2

b can be relatively interpreted

in Z2; bZ
2CT ‘ConðbZ2Þ only if DZ2CT ‘ConbðZ2

bÞ.
bZ

2CT
comprises base axioms:

ðAM 1Þ ;xðSxÞ0Þ

ðAM 2Þ ;x;yðSx ¼ SyTx ¼ yÞ

ðAM 3Þ ;XðX0 ^ ;xðXxTXSxÞT;xXxÞ
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together with truth-theoretic axioms:

ðTM 1Þ ;a;t1;t2ðSataðt1¼
_

t2Þ� vt1ba ¼ vt2baÞ

ðTM 2Þ ;a;V;tðSataVt� vVbavtbaÞ

ðTM 3Þ ;a;fðSata ‰
_

f�‰SatafÞ

ðTM 4Þ ;a;f;wðSataðf
_̂
wÞ� Sataf ^ SatawÞ

ðTM 5Þ ;a;f;vðSata ;
_

vf� ð;b&
v
aÞSatbfÞ

ðTM 6Þ ;a;f;VðSata ;
_

Vf� ð;b&
V

aÞSatbfÞ

We define Tf as ;aSataf. Note that, in a mild abuse of notation,
this allows truth to be attributed to open formulas as well as sentences.

We will show that bZ
2CT

proves the global reflection principle

for bZ
2
:

Theorem 1. bZ
2CT ‘;fðBew

bZ
2fTTfÞ.

We follow the usual strategy of formalizing the ‘semantic argu-
ment’: all the axioms of the system are true; all its rules of inference
are truth preserving; so all its theorems are true. To that end we prove

the following six claims.

(Sem1) bZ
2CT ‘;fðLogAxfTTfÞ,

(Sem2) bZ
2CT ‘;fðPropAxfTTfÞ,

(Sem3) bZ
2CT ‘;fðCompAxfTTfÞ,

(Sem4) bZ
2CT ‘;f;wððTðfT

_
wÞ ^ TfÞTTwÞ,

(Sem5) bZ
2CT ‘;f;w;vððTðfT

_
wÞ ^ ‰Freeðv;fÞÞTTðfT

_
;* vwÞÞ,

(Sem6) bZ
2CT ‘;f;w;V ððTðfT

_
wÞ ^ ‰FreeðV;fÞÞTTðfT

_
;* VwÞÞ.
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Here LogAx expresses the property of being the code of an instance of
a logical axiom, PropAx expresses the property of being the code of an

instance of (AM1)–(AM3), and CompAx expresses the property of
being a code of an instance of (CA). (Sem4) formalizes the truth-
preservingness of modus ponens; similarly (Sem5) and (Sem6) for

the rules of inference governing the quantifiers.
From (Sem1)–(Sem6), the required reflection principle will follow,

and so too will ConbðZ2

bÞ.
A number of additional lemmata will be of use.

Lemma 2. (Disquotation Lemma) If F has no free variables, then

bZ
2CT ‘F�TpFq.

Lemma 3. (Closure) Let uclðpFqÞ be the code of F’s universal clos-

ure. bZ
2CT ‘;fðTf�TuclðfÞÞ.

Lemma 4. (Substitution of Provable Equivalents) bZ
2CT ‘;f;w;x

ððTf�TwÞTðTx�Txw=fÞ.

Lemma 5. (Variable-Swapping) Let a
&

be a ½Va1
; . . . ;Vam

; vb1
; . . . ;

vbn
=Vc1

; . . . ;Vcm
; vd1

; . . . ; vdn
�. Then bZ

2CT ‘;f;a ðSataf�

Sat
a
&fVa1

; . . . ;Vam
; vb1

; . . . ; vbn
=Vc1

; . . . ;Vcm
; vd1

; . . . ; vdn
Þ.

Proof. Disquotation follows by a simple induction in the metalan-

guage. Closure, Substitution of Provable Equivalents, and Variable-
Swapping proceed by internal inductions. .

We first show (Sem4)–(Sem6). (Sem4) follows straightforwardly

from (TM3), (TM4), and the definition of the conditional. For
(Sem5) and (Sem6), we need the following lemma, saying that if
two assignments agree on all free variables in F, they agree on F:

Lemma 6.

bZ
2CT ‘ ;a;b;f;V;vðððFreeðv;fÞTvvba ¼ vvbbÞ ^ ðFreeðV;fÞT

vVba ¼ vVbbÞÞTðSataf� SatbfÞÞ;

Proof. By an internal induction on complexity of formulas in bZ
2CT

.

We write a&
fv

b if a and b agree on all free variables in the relevant
formula. The base case is clear; it relies only on (TM1), (TM2), and the
definition of vb. For the induction step, suppose
;w;a;bða&fv bTðSataw� SatbwÞ for all w of complexity < n and
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that f has complexity n. The only difficult cases are the quantifiers.
We show the ;v case; the ;V case is similar.

We reason informally in bZ
2CT

. First, if v is not free in w, then ;vw
and w are equivalent, and so we are done. Thus assume v is free in w

and suppose a&
fv

b and Sata ;* vw. Then for all a0&
v
a; Sata0w. Now

suppose b0&
v

b. Then there is some a0&
v
a such that b0&

fv
a0. Now,

by the IH, we have Sata0w� Satb0w. So Satb0w. So for all b0 such

that b0&
v

b; Satb0w. But then Satb ;* vw. .
Two immediate consequences of Lemma 6 are:

;f;vð‰Freeðv;fÞTð;a;bða&v
bTðSataf� SatbfÞÞÞ

and

;f;Vð‰FreeðV;fÞTð;a;bða&V bTðSataf� SatbfÞÞÞ:

From these two claims, (Sem5) and (Sem6) follow by (TM ±5) and

(TM 6).
To show (Sem1) requires a formalized induction.

Lemma 7. bZ
2CT ‘;fðLogAxfTTfÞ.

Proof. The various cases are fairly straightforward; as an example,

we show

;w;v;tðFreeForðw; t; vÞTTð;
_

vfT
_

f
t

v
ÞÞ:

Working within bZ
2CT

, assume for reductio that, for some a,
Sata ;* vf but not Sataf t

v
. So for all b&

v
a; Satbf. We define

a0 ¼ a½v:¼vtba�. Since a0&
v

a; Sata0f; but, by the definition of vba and

the fact that t is free for v in f; Sata0f if and only if Sataf t
v
. .

We turn to (Sem2). In the setting with only monadic second-order
quantification, the proper axioms of bZ2 are just (AM 1)–(AM 3).

Either x is free in (AM 3) or it is not; in the former case, we can apply

Closure to reduce it to a closed sentence. Then, since there are only
finitely many proper axioms, Disquotation yields the desired result.

The hardest case is (Sem3). In order to prove that all instances of

the comprehension axiom are true (as opposed to each of the instan-
ces, which is immediate from Disquotation), we appeal to a single
judiciously chosen instance of comprehension.
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Lemma 8. bZ
2CT ‘;fðCompAxfTTfÞ.

Proof. As an instance of (CA), we have

bZ
2CT ‘'X;xðXx � Sata½vvb:¼x�wÞ

with both w and a free. Generalizing yields

bZ
2CT ‘;w;a'X;xðXx � Sata½vvb:¼x�wÞ:

From this and the second corollary to Lemma 6, we have

bZ
2CT ‘;w;a½‰FreeðV;wÞT'X;xðXx � Sata½vVb:¼X ;vvb:¼x�wÞ�:

For brevity, define Sat�a as Sata½vVb:¼X ;vvb:¼x� . Now, Xx is provably equiva-

lent to Sat�aVv, so by Substitution of Provable Equivalents, we have

bZ
2CT ‘;w;a½‰FreeðV;wÞT'X;xðSat�aVv � Sat�awÞ�:

Applying satisfaction clauses for the connectives, we obtain

bZ
2CT ‘;w;a½‰FreeðV;wÞT'X;xSat�aðVv �

:
wÞ�:

But note that ;xSata½vVb:¼X;vvb:¼x�x is provably equivalent to

ð;b&
v
aÞSatb½vVb:¼X �x, which in turn is provably equivalent, using

(TM 6), to Sata½vVb:¼X � ;* vx. Using Substitution of Provable Equivalents
again, we have

bZ
2CT ‘;w;a½‰FreeðV;wÞT'XSata½vVb:¼X � ;

_
vðVv �

_
wÞ:�

But 'XSata½vVb:¼X �x is provably equivalent to ð'b&
V

aÞSatbx, which
in turn is provably equivalent to Sata '* Vx by (TM 6), definitions, and
predicate logic. So a final application of Substitution of Provable

Equivalents yields

bZ
2CT ‘;w;a½‰FreeðV;wÞTSatað'

_
V ;

_
vðVv �

_
wÞÞ�;

or, equivalently,

bZ
2CT ‘;w½‰FreeðV;wÞTTð'

_
V ;

_
vðVv �

_
wÞÞ�:

But this is the general form of an instance of CompAx; expanding
definitions and applying clauses for the connectives, we get

bZ
2CT ‘;fðCompAxfTTfÞ. .
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